results

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.8
  • F1 Weighted: 0.7851
  • Loss: 0.6697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.7820079535067715e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 17
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Weighted Validation Loss
No log 1.0 6 0.68 0.6809 0.7999
0.6066 2.0 12 0.68 0.6398 0.7389
0.6066 3.0 18 0.76 0.7482 0.6278
0.5568 4.0 24 0.76 0.7332 0.7357
0.4146 5.0 30 0.8 0.7851 0.6697
0.4146 6.0 36 0.76 0.7510 0.6952
0.3241 7.0 42 0.76 0.7510 0.6229
0.3241 8.0 48 0.76 0.7510 0.7119
0.2655 9.0 54 0.76 0.7510 0.6794
0.195 10.0 60 0.76 0.7510 0.6919
0.195 11.0 66 0.76 0.7510 0.7807
0.1421 12.0 72 0.76 0.7510 0.7293
0.1421 13.0 78 0.76 0.7510 0.7324
0.1003 14.0 84 0.76 0.7510 0.8168
0.1141 15.0 90 0.76 0.7510 0.7625

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
4
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Noctuaru/tone_berita_p2_v1

Finetuned
(74)
this model