results
This model is a fine-tuned version of indobenchmark/indobert-base-p2 on the None dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.8
- F1 Weighted: 0.7851
- Loss: 0.6697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7820079535067715e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 17
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | F1 Weighted | Validation Loss |
|---|---|---|---|---|---|
| No log | 1.0 | 6 | 0.68 | 0.6809 | 0.7999 |
| 0.6066 | 2.0 | 12 | 0.68 | 0.6398 | 0.7389 |
| 0.6066 | 3.0 | 18 | 0.76 | 0.7482 | 0.6278 |
| 0.5568 | 4.0 | 24 | 0.76 | 0.7332 | 0.7357 |
| 0.4146 | 5.0 | 30 | 0.8 | 0.7851 | 0.6697 |
| 0.4146 | 6.0 | 36 | 0.76 | 0.7510 | 0.6952 |
| 0.3241 | 7.0 | 42 | 0.76 | 0.7510 | 0.6229 |
| 0.3241 | 8.0 | 48 | 0.76 | 0.7510 | 0.7119 |
| 0.2655 | 9.0 | 54 | 0.76 | 0.7510 | 0.6794 |
| 0.195 | 10.0 | 60 | 0.76 | 0.7510 | 0.6919 |
| 0.195 | 11.0 | 66 | 0.76 | 0.7510 | 0.7807 |
| 0.1421 | 12.0 | 72 | 0.76 | 0.7510 | 0.7293 |
| 0.1421 | 13.0 | 78 | 0.76 | 0.7510 | 0.7324 |
| 0.1003 | 14.0 | 84 | 0.76 | 0.7510 | 0.8168 |
| 0.1141 | 15.0 | 90 | 0.76 | 0.7510 | 0.7625 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 4
Model tree for Noctuaru/tone_berita_p2_v1
Base model
indobenchmark/indobert-base-p2