results
This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the None dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.8
- F1 Weighted: 0.7958
- Loss: 0.6079
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.7820079535067715e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 17
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Accuracy | F1 Weighted | Validation Loss |
|---|---|---|---|---|---|
| No log | 1.0 | 6 | 0.24 | 0.1239 | 1.1895 |
| 1.0907 | 2.0 | 12 | 0.2 | 0.1752 | 1.1029 |
| 1.0907 | 3.0 | 18 | 0.52 | 0.5176 | 0.9490 |
| 0.926 | 4.0 | 24 | 0.68 | 0.6394 | 0.7883 |
| 0.7014 | 5.0 | 30 | 0.68 | 0.6753 | 0.7388 |
| 0.7014 | 6.0 | 36 | 0.68 | 0.6635 | 0.7300 |
| 0.5443 | 7.0 | 42 | 0.72 | 0.7118 | 0.7249 |
| 0.5443 | 8.0 | 48 | 0.68 | 0.6623 | 0.7465 |
| 0.4661 | 9.0 | 54 | 0.72 | 0.7199 | 0.7159 |
| 0.3846 | 10.0 | 60 | 0.68 | 0.6623 | 0.6771 |
| 0.3846 | 11.0 | 66 | 0.76 | 0.7579 | 0.6350 |
| 0.3058 | 12.0 | 72 | 0.76 | 0.7482 | 0.5970 |
| 0.3058 | 13.0 | 78 | 0.76 | 0.7579 | 0.6114 |
| 0.2568 | 14.0 | 84 | 0.76 | 0.7482 | 0.6241 |
| 0.2434 | 15.0 | 90 | 0.8 | 0.7958 | 0.6079 |
| 0.2434 | 16.0 | 96 | 0.76 | 0.7482 | 0.6150 |
| 0.1961 | 17.0 | 102 | 0.76 | 0.7482 | 0.6026 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 3
Model tree for Noctuaru/tone_berita_p1_v1
Base model
indobenchmark/indobert-base-p1