results

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the None dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.8
  • F1 Weighted: 0.7958
  • Loss: 0.6079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.7820079535067715e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 17
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Weighted Validation Loss
No log 1.0 6 0.24 0.1239 1.1895
1.0907 2.0 12 0.2 0.1752 1.1029
1.0907 3.0 18 0.52 0.5176 0.9490
0.926 4.0 24 0.68 0.6394 0.7883
0.7014 5.0 30 0.68 0.6753 0.7388
0.7014 6.0 36 0.68 0.6635 0.7300
0.5443 7.0 42 0.72 0.7118 0.7249
0.5443 8.0 48 0.68 0.6623 0.7465
0.4661 9.0 54 0.72 0.7199 0.7159
0.3846 10.0 60 0.68 0.6623 0.6771
0.3846 11.0 66 0.76 0.7579 0.6350
0.3058 12.0 72 0.76 0.7482 0.5970
0.3058 13.0 78 0.76 0.7579 0.6114
0.2568 14.0 84 0.76 0.7482 0.6241
0.2434 15.0 90 0.8 0.7958 0.6079
0.2434 16.0 96 0.76 0.7482 0.6150
0.1961 17.0 102 0.76 0.7482 0.6026

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
3
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Noctuaru/tone_berita_p1_v1

Finetuned
(103)
this model