Safetensors
mistral

Improve model card: Add pipeline tag, library name, links, and sample usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +24 -4
README.md CHANGED
@@ -1,18 +1,38 @@
1
  ---
2
- license: cc-by-4.0
3
- datasets:
4
- - NingLab/MMECInstruct
5
  base_model:
6
  - mistralai/Mistral-7B-Instruct-v0.3
 
 
 
 
 
7
  ---
8
 
9
  # CASLIE-M
10
 
11
- This repo contains the models for "Captions Speak Louder than Images (CASLIE): Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data"
 
 
 
12
 
13
  ## CASLIE Models
14
  The CASLIE-M model is instruction-tuned from the medium-size base model [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ## Citation
17
  ```bibtex
18
  @article{ling2024captions,
 
1
  ---
 
 
 
2
  base_model:
3
  - mistralai/Mistral-7B-Instruct-v0.3
4
+ datasets:
5
+ - NingLab/MMECInstruct
6
+ license: cc-by-4.0
7
+ pipeline_tag: image-text-to-text
8
+ library_name: transformers
9
  ---
10
 
11
  # CASLIE-M
12
 
13
+ This repository contains the CASLIE-M model presented in the paper [Captions Speak Louder than Images: Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data](https://huggingface.co/papers/2410.17337).
14
+
15
+ Project page: https://ninglab.github.io/CASLIE/
16
+ Code: https://github.com/ninglab/CASLIE
17
 
18
  ## CASLIE Models
19
  The CASLIE-M model is instruction-tuned from the medium-size base model [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
20
 
21
+ ## Sample Usage
22
+
23
+ To conduct inference, run `python inference.py --model_path $model_path --task $task --output_path $output_path`.
24
+
25
+ `$model_path` is the path of the instruction-tuned model.
26
+
27
+ `$task` specifies the task to be tested.
28
+
29
+ `$output_path` specifies the path where you want to save the inference output.
30
+
31
+ Example:
32
+ ```bash
33
+ python inference.py --model_path NingLab/CASLIE-M --task answerability_prediction --output_path ap.json
34
+ ```
35
+
36
  ## Citation
37
  ```bibtex
38
  @article{ling2024captions,