Improve model card: Add pipeline tag, library name, links, and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,18 +1,38 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-4.0
|
| 3 |
-
datasets:
|
| 4 |
-
- NingLab/MMECInstruct
|
| 5 |
base_model:
|
| 6 |
- mistralai/Mistral-7B-Instruct-v0.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
---
|
| 8 |
|
| 9 |
# CASLIE-M
|
| 10 |
|
| 11 |
-
This
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
## CASLIE Models
|
| 14 |
The CASLIE-M model is instruction-tuned from the medium-size base model [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
## Citation
|
| 17 |
```bibtex
|
| 18 |
@article{ling2024captions,
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
- mistralai/Mistral-7B-Instruct-v0.3
|
| 4 |
+
datasets:
|
| 5 |
+
- NingLab/MMECInstruct
|
| 6 |
+
license: cc-by-4.0
|
| 7 |
+
pipeline_tag: image-text-to-text
|
| 8 |
+
library_name: transformers
|
| 9 |
---
|
| 10 |
|
| 11 |
# CASLIE-M
|
| 12 |
|
| 13 |
+
This repository contains the CASLIE-M model presented in the paper [Captions Speak Louder than Images: Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data](https://huggingface.co/papers/2410.17337).
|
| 14 |
+
|
| 15 |
+
Project page: https://ninglab.github.io/CASLIE/
|
| 16 |
+
Code: https://github.com/ninglab/CASLIE
|
| 17 |
|
| 18 |
## CASLIE Models
|
| 19 |
The CASLIE-M model is instruction-tuned from the medium-size base model [Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3).
|
| 20 |
|
| 21 |
+
## Sample Usage
|
| 22 |
+
|
| 23 |
+
To conduct inference, run `python inference.py --model_path $model_path --task $task --output_path $output_path`.
|
| 24 |
+
|
| 25 |
+
`$model_path` is the path of the instruction-tuned model.
|
| 26 |
+
|
| 27 |
+
`$task` specifies the task to be tested.
|
| 28 |
+
|
| 29 |
+
`$output_path` specifies the path where you want to save the inference output.
|
| 30 |
+
|
| 31 |
+
Example:
|
| 32 |
+
```bash
|
| 33 |
+
python inference.py --model_path NingLab/CASLIE-M --task answerability_prediction --output_path ap.json
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
## Citation
|
| 37 |
```bibtex
|
| 38 |
@article{ling2024captions,
|