bert-section-classification-v5
This model is a fine-tuned version of medicalai/ClinicalBERT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9710
- Accuracy: 0.8644
- Precision: 0.8671
- Recall: 0.8644
- F1: 0.8642
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 6
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 370 | 1.3245 | 0.2555 | 0.3090 | 0.2555 | 0.1199 |
| 1.3542 | 2.0 | 740 | 1.2024 | 0.7319 | 0.8115 | 0.7319 | 0.7163 |
| 1.2122 | 3.0 | 1110 | 1.1008 | 0.8675 | 0.8756 | 0.8675 | 0.8678 |
| 1.2122 | 4.0 | 1480 | 1.0275 | 0.8770 | 0.8834 | 0.8770 | 0.8773 |
| 1.082 | 5.0 | 1850 | 0.9855 | 0.8707 | 0.8751 | 0.8707 | 0.8706 |
| 1.003 | 6.0 | 2220 | 0.9710 | 0.8644 | 0.8671 | 0.8644 | 0.8642 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for NazzX1/clinical-bert-section-classification-v5
Base model
medicalai/ClinicalBERT