clinical-bert-section-Hclassification-v6
This model is a fine-tuned version of medicalai/ClinicalBERT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9591
- Accuracy: 0.8801
- Precision: 0.8830
- Recall: 0.8801
- F1: 0.8806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 6
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 370 | 1.3239 | 0.2713 | 0.5686 | 0.2713 | 0.1492 |
| 1.3557 | 2.0 | 740 | 1.1959 | 0.7508 | 0.8241 | 0.7508 | 0.7339 |
| 1.2023 | 3.0 | 1110 | 1.0914 | 0.8738 | 0.8825 | 0.8738 | 0.8747 |
| 1.2023 | 4.0 | 1480 | 1.0174 | 0.8738 | 0.8795 | 0.8738 | 0.8741 |
| 1.071 | 5.0 | 1850 | 0.9738 | 0.8801 | 0.8834 | 0.8801 | 0.8804 |
| 0.9892 | 6.0 | 2220 | 0.9591 | 0.8801 | 0.8830 | 0.8801 | 0.8806 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Tokenizers 0.21.1
- Downloads last month
- 1
Model tree for NazzX1/clinical-bert-section-Hclassification-v6
Base model
medicalai/ClinicalBERT