YOLO11m Red Bull competitors
- monster
- monster_can
- celsius
- celsius_can
- sting
- sting_can
- alaninu
- alaninu_can
- white_monster_can
Dataset and training
Link to dataset: https://mediacatch.fra1.digitaloceanspaces.com/logo_recognition/data/redbull-competitors.zip.
Local copy: /datasets/logo/logos/redbull-competitors.
To train on a single RTX 3090:
yolo detect train data=data.yaml model=yolo11m.pt epochs=100 imgsz=1280 batch=8
and with four devices:
yolo detect train data=data.yaml model=yolo11m.pt epochs=100 imgsz=1280 batch=32 device=0,1,2,3
Usage
Using YOLO's own CLI:
yolo predict model=/path/to/best.pt source=/path/to/inputs conf=0.5
Using bifrost detector lib https://github.com/mediacatch/bifrost/tree/development/libs/detector:
uv run detect --conf-threshold 0.5 --imgsz 1280 /path/to/inputs redbull-competitors
Using HF:
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
weights = hf_hub_download("MediaCatch/yolo11m-redbull-competitors", "best.pt")
model = YOLO(weights)
results = model("https://ultralytics.com/images/zidane.jpg", conf=0.5, imgsz=1280)
Labels
Results
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MediaCatch/yolo11m-redbull-competitors
Base model
Ultralytics/YOLO11