LuuNgoc2k2's picture
Upload README.md with huggingface_hub
8dabc30 verified
---
license: cc-by-nc-4.0
language:
- ro
base_model: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23
datasets:
- OpenLLM-Ro/ro_dpo_helpsteer
- OpenLLM-Ro/ro_dpo_ultrafeedback
- OpenLLM-Ro/ro_dpo_magpie
- OpenLLM-Ro/ro_dpo_argilla_magpie
- OpenLLM-Ro/ro_dpo_helpsteer2
tags:
- llama-cpp
- gguf-my-repo
model-index:
- name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23
results:
- task:
type: text-generation
dataset:
name: RoMT-Bench
type: RoMT-Bench
metrics:
- type: Score
value: 7.26
name: Score
- type: Score
value: 7.65
name: First turn
- type: Score
value: 6.86
name: Second turn
- task:
type: text-generation
dataset:
name: RoCulturaBench
type: RoCulturaBench
metrics:
- type: Score
value: 5.36
name: Score
- task:
type: text-generation
dataset:
name: Romanian_Academic_Benchmarks
type: Romanian_Academic_Benchmarks
metrics:
- type: accuracy
value: 59.79
name: Average accuracy
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_arc_challenge
type: OpenLLM-Ro/ro_arc_challenge
metrics:
- type: accuracy
value: 55.66
name: Average accuracy
- type: accuracy
value: 52.44
name: 0-shot
- type: accuracy
value: 55.7
name: 1-shot
- type: accuracy
value: 56.47
name: 3-shot
- type: accuracy
value: 55.7
name: 5-shot
- type: accuracy
value: 57.16
name: 10-shot
- type: accuracy
value: 56.47
name: 25-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_mmlu
type: OpenLLM-Ro/ro_mmlu
metrics:
- type: accuracy
value: 64.0
name: Average accuracy
- type: accuracy
value: 65.2
name: 0-shot
- type: accuracy
value: 63.27
name: 1-shot
- type: accuracy
value: 63.83
name: 3-shot
- type: accuracy
value: 63.69
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_winogrande
type: OpenLLM-Ro/ro_winogrande
metrics:
- type: accuracy
value: 73.16
name: Average accuracy
- type: accuracy
value: 74.11
name: 0-shot
- type: accuracy
value: 72.53
name: 1-shot
- type: accuracy
value: 72.93
name: 3-shot
- type: accuracy
value: 73.09
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_hellaswag
type: OpenLLM-Ro/ro_hellaswag
metrics:
- type: accuracy
value: 64.26
name: Average accuracy
- type: accuracy
value: 65.9
name: 0-shot
- type: accuracy
value: 66.06
name: 1-shot
- type: accuracy
value: 62.36
name: 3-shot
- type: accuracy
value: 61.87
name: 5-shot
- type: accuracy
value: 65.11
name: 10-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_gsm8k
type: OpenLLM-Ro/ro_gsm8k
metrics:
- type: accuracy
value: 37.8
name: Average accuracy
- type: accuracy
value: 16.83
name: 1-shot
- type: accuracy
value: 43.21
name: 3-shot
- type: accuracy
value: 53.37
name: 5-shot
- task:
type: text-generation
dataset:
name: OpenLLM-Ro/ro_truthfulqa
type: OpenLLM-Ro/ro_truthfulqa
metrics:
- type: accuracy
value: 63.86
name: Average accuracy
- task:
type: text-generation
dataset:
name: LaRoSeDa_binary
type: LaRoSeDa_binary
metrics:
- type: macro-f1
value: 82.84
name: Average macro-f1
- type: macro-f1
value: 39.18
name: 0-shot
- type: macro-f1
value: 96.59
name: 1-shot
- type: macro-f1
value: 97.63
name: 3-shot
- type: macro-f1
value: 97.97
name: 5-shot
- task:
type: text-generation
dataset:
name: LaRoSeDa_multiclass
type: LaRoSeDa_multiclass
metrics:
- type: macro-f1
value: 65.95
name: Average macro-f1
- type: macro-f1
value: 58.94
name: 0-shot
- type: macro-f1
value: 64.99
name: 1-shot
- type: macro-f1
value: 68.86
name: 3-shot
- type: macro-f1
value: 71.03
name: 5-shot
- task:
type: text-generation
dataset:
name: WMT_EN-RO
type: WMT_EN-RO
metrics:
- type: bleu
value: 28.16
name: Average bleu
- type: bleu
value: 26.89
name: 0-shot
- type: bleu
value: 31.18
name: 1-shot
- type: bleu
value: 30.65
name: 3-shot
- type: bleu
value: 23.91
name: 5-shot
- task:
type: text-generation
dataset:
name: WMT_RO-EN
type: WMT_RO-EN
metrics:
- type: bleu
value: 19.34
name: Average bleu
- type: bleu
value: 2.98
name: 0-shot
- type: bleu
value: 20.3
name: 1-shot
- type: bleu
value: 30.08
name: 3-shot
- type: bleu
value: 24.01
name: 5-shot
- task:
type: text-generation
dataset:
name: XQuAD
type: XQuAD
metrics:
- type: exact_match
value: 30.82
name: Average exact_match
- type: f1
value: 48.53
name: Average f1
- task:
type: text-generation
dataset:
name: STS
type: STS
metrics:
- type: spearman
value: 73.24
name: Average spearman
- type: pearson
value: 73.13
name: Average pearson
- task:
type: text-generation
dataset:
name: XQuAD_EM
type: XQuAD_EM
metrics:
- type: exact_match
value: 26.39
name: 0-shot
- type: exact_match
value: 23.87
name: 1-shot
- type: exact_match
value: 34.03
name: 3-shot
- type: exact_match
value: 38.99
name: 5-shot
- task:
type: text-generation
dataset:
name: XQuAD_F1
type: XQuAD_F1
metrics:
- type: f1
value: 43.28
name: 0-shot
- type: f1
value: 37.38
name: 1-shot
- type: f1
value: 54.08
name: 3-shot
- type: f1
value: 59.38
name: 5-shot
- task:
type: text-generation
dataset:
name: STS_Spearman
type: STS_Spearman
metrics:
- type: spearman
value: 73.46
name: 1-shot
- type: spearman
value: 73.55
name: 3-shot
- type: spearman
value: 72.7
name: 5-shot
- task:
type: text-generation
dataset:
name: STS_Pearson
type: STS_Pearson
metrics:
- type: pearson
value: 74.87
name: 1-shot
- type: pearson
value: 72.96
name: 3-shot
- type: pearson
value: 71.55
name: 5-shot
---
# LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF
This model was converted to GGUF format from [`OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23`](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -c 2048
```