|
|
--- |
|
|
license: cc-by-nc-4.0 |
|
|
language: |
|
|
- ro |
|
|
base_model: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23 |
|
|
datasets: |
|
|
- OpenLLM-Ro/ro_dpo_helpsteer |
|
|
- OpenLLM-Ro/ro_dpo_ultrafeedback |
|
|
- OpenLLM-Ro/ro_dpo_magpie |
|
|
- OpenLLM-Ro/ro_dpo_argilla_magpie |
|
|
- OpenLLM-Ro/ro_dpo_helpsteer2 |
|
|
tags: |
|
|
- llama-cpp |
|
|
- gguf-my-repo |
|
|
model-index: |
|
|
- name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23 |
|
|
results: |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: RoMT-Bench |
|
|
type: RoMT-Bench |
|
|
metrics: |
|
|
- type: Score |
|
|
value: 7.26 |
|
|
name: Score |
|
|
- type: Score |
|
|
value: 7.65 |
|
|
name: First turn |
|
|
- type: Score |
|
|
value: 6.86 |
|
|
name: Second turn |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: RoCulturaBench |
|
|
type: RoCulturaBench |
|
|
metrics: |
|
|
- type: Score |
|
|
value: 5.36 |
|
|
name: Score |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: Romanian_Academic_Benchmarks |
|
|
type: Romanian_Academic_Benchmarks |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 59.79 |
|
|
name: Average accuracy |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: OpenLLM-Ro/ro_arc_challenge |
|
|
type: OpenLLM-Ro/ro_arc_challenge |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 55.66 |
|
|
name: Average accuracy |
|
|
- type: accuracy |
|
|
value: 52.44 |
|
|
name: 0-shot |
|
|
- type: accuracy |
|
|
value: 55.7 |
|
|
name: 1-shot |
|
|
- type: accuracy |
|
|
value: 56.47 |
|
|
name: 3-shot |
|
|
- type: accuracy |
|
|
value: 55.7 |
|
|
name: 5-shot |
|
|
- type: accuracy |
|
|
value: 57.16 |
|
|
name: 10-shot |
|
|
- type: accuracy |
|
|
value: 56.47 |
|
|
name: 25-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: OpenLLM-Ro/ro_mmlu |
|
|
type: OpenLLM-Ro/ro_mmlu |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 64.0 |
|
|
name: Average accuracy |
|
|
- type: accuracy |
|
|
value: 65.2 |
|
|
name: 0-shot |
|
|
- type: accuracy |
|
|
value: 63.27 |
|
|
name: 1-shot |
|
|
- type: accuracy |
|
|
value: 63.83 |
|
|
name: 3-shot |
|
|
- type: accuracy |
|
|
value: 63.69 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: OpenLLM-Ro/ro_winogrande |
|
|
type: OpenLLM-Ro/ro_winogrande |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 73.16 |
|
|
name: Average accuracy |
|
|
- type: accuracy |
|
|
value: 74.11 |
|
|
name: 0-shot |
|
|
- type: accuracy |
|
|
value: 72.53 |
|
|
name: 1-shot |
|
|
- type: accuracy |
|
|
value: 72.93 |
|
|
name: 3-shot |
|
|
- type: accuracy |
|
|
value: 73.09 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: OpenLLM-Ro/ro_hellaswag |
|
|
type: OpenLLM-Ro/ro_hellaswag |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 64.26 |
|
|
name: Average accuracy |
|
|
- type: accuracy |
|
|
value: 65.9 |
|
|
name: 0-shot |
|
|
- type: accuracy |
|
|
value: 66.06 |
|
|
name: 1-shot |
|
|
- type: accuracy |
|
|
value: 62.36 |
|
|
name: 3-shot |
|
|
- type: accuracy |
|
|
value: 61.87 |
|
|
name: 5-shot |
|
|
- type: accuracy |
|
|
value: 65.11 |
|
|
name: 10-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: OpenLLM-Ro/ro_gsm8k |
|
|
type: OpenLLM-Ro/ro_gsm8k |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 37.8 |
|
|
name: Average accuracy |
|
|
- type: accuracy |
|
|
value: 16.83 |
|
|
name: 1-shot |
|
|
- type: accuracy |
|
|
value: 43.21 |
|
|
name: 3-shot |
|
|
- type: accuracy |
|
|
value: 53.37 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: OpenLLM-Ro/ro_truthfulqa |
|
|
type: OpenLLM-Ro/ro_truthfulqa |
|
|
metrics: |
|
|
- type: accuracy |
|
|
value: 63.86 |
|
|
name: Average accuracy |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: LaRoSeDa_binary |
|
|
type: LaRoSeDa_binary |
|
|
metrics: |
|
|
- type: macro-f1 |
|
|
value: 82.84 |
|
|
name: Average macro-f1 |
|
|
- type: macro-f1 |
|
|
value: 39.18 |
|
|
name: 0-shot |
|
|
- type: macro-f1 |
|
|
value: 96.59 |
|
|
name: 1-shot |
|
|
- type: macro-f1 |
|
|
value: 97.63 |
|
|
name: 3-shot |
|
|
- type: macro-f1 |
|
|
value: 97.97 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: LaRoSeDa_multiclass |
|
|
type: LaRoSeDa_multiclass |
|
|
metrics: |
|
|
- type: macro-f1 |
|
|
value: 65.95 |
|
|
name: Average macro-f1 |
|
|
- type: macro-f1 |
|
|
value: 58.94 |
|
|
name: 0-shot |
|
|
- type: macro-f1 |
|
|
value: 64.99 |
|
|
name: 1-shot |
|
|
- type: macro-f1 |
|
|
value: 68.86 |
|
|
name: 3-shot |
|
|
- type: macro-f1 |
|
|
value: 71.03 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: WMT_EN-RO |
|
|
type: WMT_EN-RO |
|
|
metrics: |
|
|
- type: bleu |
|
|
value: 28.16 |
|
|
name: Average bleu |
|
|
- type: bleu |
|
|
value: 26.89 |
|
|
name: 0-shot |
|
|
- type: bleu |
|
|
value: 31.18 |
|
|
name: 1-shot |
|
|
- type: bleu |
|
|
value: 30.65 |
|
|
name: 3-shot |
|
|
- type: bleu |
|
|
value: 23.91 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: WMT_RO-EN |
|
|
type: WMT_RO-EN |
|
|
metrics: |
|
|
- type: bleu |
|
|
value: 19.34 |
|
|
name: Average bleu |
|
|
- type: bleu |
|
|
value: 2.98 |
|
|
name: 0-shot |
|
|
- type: bleu |
|
|
value: 20.3 |
|
|
name: 1-shot |
|
|
- type: bleu |
|
|
value: 30.08 |
|
|
name: 3-shot |
|
|
- type: bleu |
|
|
value: 24.01 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: XQuAD |
|
|
type: XQuAD |
|
|
metrics: |
|
|
- type: exact_match |
|
|
value: 30.82 |
|
|
name: Average exact_match |
|
|
- type: f1 |
|
|
value: 48.53 |
|
|
name: Average f1 |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: STS |
|
|
type: STS |
|
|
metrics: |
|
|
- type: spearman |
|
|
value: 73.24 |
|
|
name: Average spearman |
|
|
- type: pearson |
|
|
value: 73.13 |
|
|
name: Average pearson |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: XQuAD_EM |
|
|
type: XQuAD_EM |
|
|
metrics: |
|
|
- type: exact_match |
|
|
value: 26.39 |
|
|
name: 0-shot |
|
|
- type: exact_match |
|
|
value: 23.87 |
|
|
name: 1-shot |
|
|
- type: exact_match |
|
|
value: 34.03 |
|
|
name: 3-shot |
|
|
- type: exact_match |
|
|
value: 38.99 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: XQuAD_F1 |
|
|
type: XQuAD_F1 |
|
|
metrics: |
|
|
- type: f1 |
|
|
value: 43.28 |
|
|
name: 0-shot |
|
|
- type: f1 |
|
|
value: 37.38 |
|
|
name: 1-shot |
|
|
- type: f1 |
|
|
value: 54.08 |
|
|
name: 3-shot |
|
|
- type: f1 |
|
|
value: 59.38 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: STS_Spearman |
|
|
type: STS_Spearman |
|
|
metrics: |
|
|
- type: spearman |
|
|
value: 73.46 |
|
|
name: 1-shot |
|
|
- type: spearman |
|
|
value: 73.55 |
|
|
name: 3-shot |
|
|
- type: spearman |
|
|
value: 72.7 |
|
|
name: 5-shot |
|
|
- task: |
|
|
type: text-generation |
|
|
dataset: |
|
|
name: STS_Pearson |
|
|
type: STS_Pearson |
|
|
metrics: |
|
|
- type: pearson |
|
|
value: 74.87 |
|
|
name: 1-shot |
|
|
- type: pearson |
|
|
value: 72.96 |
|
|
name: 3-shot |
|
|
- type: pearson |
|
|
value: 71.55 |
|
|
name: 5-shot |
|
|
--- |
|
|
|
|
|
# LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF |
|
|
This model was converted to GGUF format from [`OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23`](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
|
Refer to the [original model card](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23) for more details on the model. |
|
|
|
|
|
## Use with llama.cpp |
|
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
|
|
```bash |
|
|
brew install llama.cpp |
|
|
|
|
|
``` |
|
|
Invoke the llama.cpp server or the CLI. |
|
|
|
|
|
### CLI: |
|
|
```bash |
|
|
llama-cli --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -p "The meaning to life and the universe is" |
|
|
``` |
|
|
|
|
|
### Server: |
|
|
```bash |
|
|
llama-server --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -c 2048 |
|
|
``` |
|
|
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
|
``` |
|
|
git clone https://github.com/ggerganov/llama.cpp |
|
|
``` |
|
|
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
|
``` |
|
|
cd llama.cpp && LLAMA_CURL=1 make |
|
|
``` |
|
|
|
|
|
Step 3: Run inference through the main binary. |
|
|
``` |
|
|
./llama-cli --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -p "The meaning to life and the universe is" |
|
|
``` |
|
|
or |
|
|
``` |
|
|
./llama-server --hf-repo LuuNgoc2k2/RoGemma2-9b-Instruct-DPO-2025-04-23-Q8_0-GGUF --hf-file rogemma2-9b-instruct-dpo-2025-04-23-q8_0.gguf -c 2048 |
|
|
``` |
|
|
|