❗Warning: Known Compatibility Issue
This model is currently not working because the Nemotron-H architecture is not yet supported completely by the underlying llama-cpp-python inference engine. The original llama.cpp supports this model, so install llama.cpp using the guide below, then run this model.
Lumia101/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M-GGUF
This model was converted to GGUF format from nvidia/NVIDIA-Nemotron-Nano-9B-v2 using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Lumia101/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M-GGUF --hf-file nvidia-nemotron-nano-9b-v2-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Lumia101/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M-GGUF --hf-file nvidia-nemotron-nano-9b-v2-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Lumia101/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M-GGUF --hf-file nvidia-nemotron-nano-9b-v2-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Lumia101/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M-GGUF --hf-file nvidia-nemotron-nano-9b-v2-q4_k_m.gguf -c 2048
- Downloads last month
- 68
4-bit
Model tree for Lumia101/NVIDIA-Nemotron-Nano-9B-v2-Q4_K_M-GGUF
Base model
nvidia/NVIDIA-Nemotron-Nano-12B-v2-Base