LFM2-ColBERT-350M / README.md
fernandofernandes's picture
Upload folder using huggingface_hub
797e7d4 verified
metadata
language:
  - en
  - ar
  - zh
  - fr
  - de
  - ja
  - ko
  - es
tags:
  - liquid
  - lfm2
  - edge
  - ColBERT
  - PyLate
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
pipeline_tag: sentence-similarity
library_name: PyLate
license: other
license_name: lfm1.0
license_link: LICENSE
metrics:
  - MaxSim_accuracy@1
  - MaxSim_accuracy@3
  - MaxSim_accuracy@5
  - MaxSim_accuracy@10
  - MaxSim_precision@1
  - MaxSim_precision@3
  - MaxSim_precision@5
  - MaxSim_precision@10
  - MaxSim_recall@1
  - MaxSim_recall@3
  - MaxSim_recall@5
  - MaxSim_recall@10
  - MaxSim_ndcg@10
  - MaxSim_mrr@10
  - MaxSim_map@100
model-index:
  - name: PyLate
    results:
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.4
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.52
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.64
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.8
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.4
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.20666666666666667
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.15600000000000003
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.11799999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.195
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.2733333333333334
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.31566666666666665
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.45899999999999996
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.38664978031372876
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.506095238095238
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.31298040075928324
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.86
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.92
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.94
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.98
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.86
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.7
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.64
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.5660000000000001
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.12059669442306678
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.2074731836307263
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.28467782707772427
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.4182321427819297
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.7139105590461106
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.8975
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.5749525139913445
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.96
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.98
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.98
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.98
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.96
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3533333333333333
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.21599999999999994
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.10799999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.8966666666666667
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.9533333333333333
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.96
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.96
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.9494352279872394
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.9666666666666667
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.9396715796806541
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.56
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.78
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.78
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.82
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.56
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.36
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.26
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.14799999999999996
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.34874603174603175
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.5375714285714286
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.584452380952381
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.6361984126984127
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.5909802936451645
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.6625000000000001
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.5325997234510657
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.92
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.98
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 1
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.92
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.5599999999999999
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.35999999999999993
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.18799999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.46
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.84
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.9
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.94
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.8954853297530804
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.9540000000000001
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.8452079490557751
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.58
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.7
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.76
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.82
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.58
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.23333333333333336
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.15200000000000002
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.08199999999999999
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.58
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.7
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.76
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.82
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.6860512766453598
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.6444126984126984
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.6563222143353721
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.5
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.6
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.66
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.7
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.5
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3933333333333333
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.36400000000000005
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.29
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.06441975062397678
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.10314642255588413
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.1276571146817061
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.15217406670771688
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.37688958487118834
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.5655
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.18401289774934215
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.66
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.78
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.86
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.88
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.66
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.26666666666666666
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.184
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.09599999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.62
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.72
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.82
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.85
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.7462482063760048
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.7323333333333334
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.7080310107127462
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.8
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.92
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.98
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.8
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3666666666666666
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.23599999999999993
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.132
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.7106666666666667
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.8813333333333333
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.9346666666666666
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.9793333333333334
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.882106394646597
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.8631666666666666
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.8429613442113442
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.5
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.68
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.76
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.86
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.5
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3466666666666666
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.27599999999999997
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.18599999999999997
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.10566666666666666
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.21366666666666664
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.2826666666666667
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.38066666666666665
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.3835676640413774
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.6130555555555556
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.29746953473534715
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.28
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.5
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.7
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.88
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.28
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.16666666666666663
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.14
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.088
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.28
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.5
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.7
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.88
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.550733304467759
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.44868253968253957
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.4511852654234456
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.7
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.82
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.88
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.92
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.7
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.29333333333333333
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.19599999999999998
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.10199999999999998
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.675
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.805
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.88
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.91
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.8042579434791977
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.7707142857142858
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.7705943722943722
            name: Maxsim Map@100
      - task:
          type: py-late-information-retrieval
          name: Py Late Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.7959183673469388
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.9795918367346939
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 1
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 1
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.7959183673469388
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.7619047619047619
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.6897959183673469
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.5489795918367346
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.054536287361574225
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.15427299614340523
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.2308549805548407
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.3471515583210746
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.629619385239878
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.8894557823129251
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.4616787350016793
            name: Maxsim Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: MaxSim_accuracy@1
            value: 0.6550706436420722
            name: Maxsim Accuracy@1
          - type: MaxSim_accuracy@3
            value: 0.7815070643642071
            name: Maxsim Accuracy@3
          - type: MaxSim_accuracy@5
            value: 0.8415384615384615
            name: Maxsim Accuracy@5
          - type: MaxSim_accuracy@10
            value: 0.8953846153846154
            name: Maxsim Accuracy@10
          - type: MaxSim_precision@1
            value: 0.6550706436420722
            name: Maxsim Precision@1
          - type: MaxSim_precision@3
            value: 0.3852747252747252
            name: Maxsim Precision@3
          - type: MaxSim_precision@5
            value: 0.2976766091051805
            name: Maxsim Precision@5
          - type: MaxSim_precision@10
            value: 0.20407535321821035
            name: Maxsim Precision@10
          - type: MaxSim_recall@1
            value: 0.3931768280118962
            name: Maxsim Recall@1
          - type: MaxSim_recall@3
            value: 0.5299331305821623
            name: Maxsim Recall@3
          - type: MaxSim_recall@5
            value: 0.5985109464051271
            name: Maxsim Recall@5
          - type: MaxSim_recall@10
            value: 0.6717504754237795
            name: Maxsim Recall@10
          - type: MaxSim_ndcg@10
            value: 0.6612257654240528
            name: Maxsim Ndcg@10
          - type: MaxSim_mrr@10
            value: 0.7318525204953776
            name: Maxsim Mrr@10
          - type: MaxSim_map@100
            value: 0.5828975031847518
            name: Maxsim Map@100
Liquid AI

LFM2-ColBERT-350M

LFM2-ColBERT-350M is a late interaction retriever with excellent multilingual performance. It allows you to store documents in one language (for example, a product description in English) and retrieve them in many languages with high accuracy.

  • LFM2-ColBERT-350M offers best-in-class accuracy across different languages.
  • Inference speed is on par with models 2.3 times smaller, thanks to the efficient LFM2 backbone.
  • You can use it as a drop-in replacement in your current RAG pipelines to improve performance.

Find more information about LFM2-ColBERT-350M in our blog post.

πŸš€ Try our demo: https://huggingface.co/spaces/LiquidAI/LFM2-ColBERT

πŸ“„ Model details

Late interaction retrievers like LFM2-ColBERT-350M are particularly interesting because they preserve much of the expressivity of re-rankers while retaining the efficiency of bi-encoders. In practice, they're used to both retrieve documents at scale (like bi-encoders) and rank them at the same time (like rerankers).

image

We recommend using this model for various RAG use cases, such as:

  • E-commerce: Find products across many languages with semantic search at scale.
  • On-device semantic search: Ask questions to your phone in natural language to retrieve files, emails, and notes.
  • Enterprise knowledge assistants: Retrieve internal legal, financial, and technical documents in different languages.
Property LFM2-ColBERT-350M
Total parameters 353,322,752
Layers 25 (18 conv + 6 attn + 1 dense)
Context length 32,768 tokens
Vocabulary size 65,536
Training precision BF16
License LFM Open License v1.0

Document length: 512 tokens

Query length: 32 tokens

Output dimensionality: 128 tokens

Similarity function: MaxSim

Supported languages: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.

ColBERT(
  (0): Transformer({'max_seq_length': 511, 'do_lower_case': False}) with Transformer model: Lfm2Model 
  (1): Dense({'in_features': 1024, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

πŸƒ How to run

Colab link

First, install the PyLate and transformers library:

pip install -U pylate

Retrieval

Use this model with PyLate to index and retrieve documents. The index uses FastPLAID for efficient similarity search.

Indexing documents

Load LFM2-ColBERT-350M and initialize the PLAID index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path="LiquidAI/LFM2-ColBERT-350M",
)
model.tokenizer.pad_token = model.tokenizer.eos_token

# Step 2: Initialize the PLAID index
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.PLAID(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use LFM2-ColBERT-350M to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path="LiquidAI/LFM2-ColBERT-350M",
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

πŸ“ˆ Performance

Accuracy

We extended the NanoBEIR benchmark to include Japanese and Korean languages. We open-sourced this dataset on Hugging Face at LiquidAI/nanobeir-multilingual-extended for reproducibility. On this NanoBEIR benchmark, LFM2-ColBERT-350M displays significantly stronger multilingual capabilities (especially in German, Arabic, Korean, and Japanese) while maintaining English performance.

image

Even more interestingly, LFM2-ColBERT-350M is an excellent cross-lingual retriever. This means that it is capable of retrieving documents based on queries from other languages. This is ideal for client-facing applications, like in e-commerce, where a description might be in English but the query is in another language.

LFM2-ColBERT-350M works especially well for English, French, Spanish, Italian, Portuguese, and German, as shown with these NDCG@10 scores on NanoBEIR:

Doc / Query AR DE EN ES FR IT JA KO PT AVG
AR 0.490 0.288 0.339 0.303 0.304 0.286 0.357 0.338 0.291 33.30%
DE 0.383 0.563 0.547 0.498 0.502 0.489 0.424 0.368 0.486 47.33%
EN 0.416 0.554 0.661 0.553 0.551 0.522 0.477 0.395 0.535 51.82%
ES 0.412 0.514 0.578 0.563 0.547 0.529 0.436 0.394 0.547 50.21%
FR 0.408 0.527 0.573 0.552 0.564 0.537 0.450 0.388 0.549 50.53%
IT 0.395 0.512 0.554 0.535 0.535 0.543 0.439 0.386 0.529 49.20%
JA 0.375 0.365 0.409 0.358 0.345 0.337 0.557 0.491 0.330 39.63%
KO 0.326 0.274 0.310 0.282 0.265 0.266 0.440 0.527 0.271 32.89%
PT 0.402 0.499 0.558 0.545 0.528 0.529 0.436 0.382 0.547 49.17%
AVG 40.07% 45.51% 50.32% 46.54% 46.00% 44.86% 44.62% 40.78% 45.38%

In comparison, GTE-ModernColBERT-v1 consistently gets lower scores when documents and queries are not in the same language:

Doc / Query AR DE EN ES FR IT JA KO PT AVG
AR 0.309 0.089 0.107 0.089 0.094 0.092 0.070 0.049 0.087 10.96%
DE 0.039 0.499 0.454 0.362 0.393 0.367 0.133 0.061 0.361 29.65%
EN 0.042 0.408 0.680 0.446 0.484 0.420 0.167 0.073 0.438 35.08%
ES 0.044 0.360 0.485 0.525 0.465 0.437 0.149 0.061 0.487 33.48%
FR 0.044 0.381 0.505 0.455 0.546 0.428 0.136 0.057 0.467 33.35%
IT 0.043 0.369 0.449 0.446 0.451 0.516 0.143 0.054 0.448 32.36%
JA 0.031 0.169 0.250 0.172 0.177 0.169 0.459 0.059 0.165 18.35%
KO 0.030 0.134 0.169 0.127 0.133 0.125 0.090 0.368 0.124 14.45%
PT 0.043 0.368 0.479 0.492 0.467 0.448 0.138 0.062 0.530 33.63%
AVG 6.94% 30.84% 39.75% 34.59% 35.68% 33.35% 16.53% 9.37% 34.24%

This makes retrieval a lot more reliable and can replace architectures with multiple models with a single, unified retriever.

Inference speed

Despite being more than twice as big, LFM2-ColBERT-350M demonstrates throughput performance on par with GTE-ModernColBERT-v1 for query and document encoding across various batch sizes.

Query encoding was evaluated using realistic query patterns from datasets like MS MARCO and Natural Questions.

image

Document encoding was measured on realistic documents with varying lengths and domains.

image

πŸ“¬ Contact

If you are interested in custom solutions with edge deployment, please contact our sales team.

Please cite the PyLate library if you use it for inference or training:

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, RaphaΓ«l},
url={https://github.com/lightonai/pylate},
year={2024}
}