Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning
Orion-MSP is a tabular foundation model for in-context learning. It uses multi-scale sparse attention and Perceiver-style memory to process tabular data at multiple granularities, capturing both local feature interactions and global dataset-level patterns.
Key Features
- Multi-Scale Sparse Attention: Processes features at three levels (scales 1, 4, 16) using windowed, global, and random attention patterns, reducing quadratic complexity to near-linear.
- Hierarchical Feature Understanding: Captures patterns from individual cells to feature groups through scale-aware attention.
- Perceiver-Style Memory: Cross-component memory that compresses dataset information for efficient processing across samples
- Memory-Efficient: Block-sparse masking enables efficient processing of large tabular datasets
- Scikit-learn Compatible: Drop-in replacement with .fit() and .predict() methods
Architecture
Orion-MSP consists of four main components:
- Column-wise Embedding: Distribution-aware feature embeddings using Induced Set Attention Blocks (ISAB)
- Multi-Scale Row Interaction: Sparse attention with windowed, global, and random patterns across multiple scales
- Cross-Component Memory: Perceiver-style memory for efficient dataset-level context
- Dataset-wise ICL: Enhanced predictor leveraging enriched representations for few-shot tabular classification
Performance
| Models | All | TALENT | OpenML-CC18 | TabZilla | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Rank | Rank | ACC | F1 | Rank | ACC | F1 | Rank | ACC | F1 | |
| XGBoost | 6.70 | 6.02 | 0.8403 | 0.8360 | 5.89 | 0.8558 | 0.8537 | 6.07 | 0.8612 | 0.8326 |
| CatBoost | 6.43 | 5.57 | 0.8336 | 0.8259 | 6.25 | 0.8588 | 0.8520 | 7.13 | 0.8579 | 0.8384 |
| Random Forest | 7.38 | 6.15 | 0.8285 | 0.8209 | 6.36 | 0.8547 | 0.8497 | 8.42 | 0.8358 | 0.8399 |
| LightGBM | 6.78 | 6.11 | 0.8331 | 0.8245 | 6.18 | 0.8581 | 0.8493 | 5.25 | 0.8618 | 0.8211 |
| TabICL | 4.96 | 4.09 | 0.8471 | 0.8379 | 4.69 | 0.8667 | 0.8623 | 5.89 | 0.8734 | 0.8698 |
| OrionBiX | 5.37 | 4.59 | 0.8346 | 0.8260 | 4.98 | 0.8653 | 0.8596 | 4.89 | 0.8728 | 0.8628 |
| OrionMSP | 3.58 | 3.26 | 0.8461 | 0.8360 | 4.12 | 0.8722 | 0.8676 | 3.84 | 0.8821 | 0.8786 |
| TabPFN | 4.61 | 3.72 | 0.8514 | 0.8412 | 4.76 | 0.8714 | 0.8663 | 4.86 | 0.8752 | 0.8716 |
| Mitra | 11.77 | 10.38 | 0.3921 | 0.2868 | 10.52 | 0.3614 | 0.2522 | 11.21 | 0.3152 | 0.1830 |
| ContextTab | 9.70 | 9.84 | 0.5474 | 0.4596 | 6.28 | 0.8639 | 0.8581 | 7.13 | 0.8389 | 0.8334 |
| TabDPT | 5.42 | 5.19 | 0.8408 | 0.8318 | 4.64 | 0.8672 | 0.8625 | 3.94 | 0.8814 | 0.8775 |
Orion-MSP is the most consistent top performer across all three benchmarks, achieving the best overall rank.
- On TALENT, it ranks *1 overall, while TabPFN edges the highest ACC/F1 by a hair.
- On OpenML-CC18, Orion-MSP attains the top ACC/F1 (0.8722/0.8676), narrowly ahead of TabPFN and TabDPT.
- On TabZilla, it leads with the highest ACC/F1 and the best rank.
- Classical baselines (XGBoost/LightGBM/CatBoost/RF) trail noticeably, highlighting Orion-MSP’s robustness across diverse tabular tasks.
| Models | Small (<1K) | Medium (1K–10K) | Large (>10K) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Rank | ACC | F1 | Rank | ACC | F1 | Rank | ACC | F1 | |
| XGBoost | 7.70 | 0.8168 | 0.7964 | 6.88 | 0.8363 | 0.8314 | 5.41 | 0.8969 | 0.8920 |
| CatBoost | 7.88 | 0.8124 | 0.7935 | 6.47 | 0.8340 | 0.8264 | 5.48 | 0.8797 | 0.8733 |
| Random Forest | 8.55 | 0.7988 | 0.8187 | 7.16 | 0.8285 | 0.8221 | 7.30 | 0.8694 | 0.8628 |
| LightGBM | 7.80 | 0.8143 | 0.7789 | 6.94 | 0.8314 | 0.8226 | 5.63 | 0.8827 | 0.8764 |
| TabICL | 6.04 | 0.8301 | 0.8338 | 4.77 | 0.8486 | 0.8398 | 4.61 | 0.8802 | 0.8743 |
| OrionBiX | 6.32 | 0.8330 | 0.8150 | 5.48 | 0.8348 | 0.8260 | 4.42 | 0.8729 | 0.8670 |
| OrionMSP | 5.93 | 0.8232 | 0.8194 | 3.70 | 0.8494 | 0.8402 | 3.04 | 0.8843 | 0.8768 |
| TabPFN | 6.50 | 0.8325 | 0.8131 | 3.81 | 0.8557 | 0.8462 | 5.73 | 0.8783 | 0.8713 |
| Mitra | 13.88 | 0.4334 | 0.3236 | 11.59 | 0.3600 | 0.2553 | 11.11 | 0.3837 | 0.2754 |
| ContextTab | 9.60 | 0.7578 | 0.7363 | 9.52 | 0.6210 | 0.5566 | 10.22 | 0.6388 | 0.5638 |
| TabDPT | 5.48 | 0.8333 | 0.8271 | 5.40 | 0.8424 | 0.8339 | 5.26 | 0.8831 | 0.8765 |
OrionMSP is the most consistent top-ranked model as data grows (especially Medium/Large), while TabPFN peaks on Medium and GBDTs (e.g., XGBoost) catch up in raw ACC/F1 on Large.
| Models | Narrow (<10) | Medium (10–100) | Wide (>100) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Rank | ACC | F1 | Rank | ACC | F1 | Rank | ACC | F1 | |
| XGBoost | 6.77 | 0.8222 | 0.8159 | 6.90 | 0.8482 | 0.8410 | 4.79 | 0.9140 | 0.9039 |
| CatBoost | 5.63 | 0.8145 | 0.8067 | 6.88 | 0.8441 | 0.8344 | 5.50 | 0.9157 | 0.9084 |
| Random Forest | 7.15 | 0.8005 | 0.7044 | 7.44 | 0.8410 | 0.8235 | 7.52 | 0.9034 | 0.8936 |
| LightGBM | 6.15 | 0.8128 | 0.7907 | 6.92 | 0.8458 | 0.8326 | 7.47 | 0.8999 | 0.8908 |
| TabICL | 5.14 | 0.8208 | 0.8119 | 4.61 | 0.8627 | 0.8549 | 6.46 | 0.9101 | 0.8936 |
| OrionBiX | 4.64 | 0.8112 | 0.8043 | 5.46 | 0.8510 | 0.8417 | 6.73 | 0.8859 | 0.8849 |
| OrionMSP | 3.76 | 0.8394 | 0.8314 | 4.09 | 0.8572 | 0.8478 | 5.69 | 0.8860 | 0.8837 |
| TabPFN | 5.30 | 0.8187 | 0.8092 | 4.07 | 0.8676 | 0.8589 | 6.141 | 0.9129 | 0.9111 |
| Mitra | 11.25 | 0.3737 | 0.2683 | 11.84 | 0.3886 | 0.2781 | 13.03 | 0.2521 | 0.1497 |
| ContextTab | 9.52 | 0.6391 | 0.5719 | 9.59 | 0.6480 | 0.5843 | 10.97 | 0.6017 | 0.5651 |
| TabDPT | 4.66 | 0.8262 | 0.8189 | 5.45 | 0.8566 | 0.8483 | 7.23 | 0.8845 | 0.8820 |
OrionMSP excels on narrow and stays strong on medium width, while TabPFN dominates medium-width features and GBDTs (XGBoost/CatBoost) shine on wide feature spaces.
Usage
from orion_msp.sklearn import OrionMSPClassifier
# Initialize and use
clf = OrionMSPClassifier()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
This code will automatically download the pre-trained model from Hugging Face and use a GPU if available.
Installation
From the source
Option 1: From the local clone
cd orion-msp
pip install -e .
Option 2: From the Git Remote
pip install git+https://github.com/Lexsi-Labs/Orion-MSP.git
Citation
If you use Orion-MSP, please cite our paper:
@article{bouadi25orionmsp,
title={Orion-MSP: Multi-Scale Sparse Attention for Tabular In-Context Learning},
author={Mohamed Bouadi and Pratinav Seth and Aditya Tanna and Vinay Kumar Sankarapu},
year={2025}
eprint={2511.02818},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2511.02818},
}
- Downloads last month
- 11