The L2AI-dictionary model is fine-tuned checkpoint of klue/bert-base for multiple choice, specifically for selecting the best dictionary definition of a given word in a sentence. Below is an example usage:

import numpy as np
import torch
from transformers import AutoModelForMultipleChoice, AutoTokenizer

model_name = "JesseStover/L2AI-dictionary-klue-bert-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForMultipleChoice.from_pretrained(model_name)
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))

prompts = "\"κ°•μ•„μ§€λŠ” λ½€μ†‘λ½€μ†‘ν•˜λ‹€.\"에 μžˆλŠ” \"κ°•μ•„μ§€\"의 μ •μ˜λŠ” "
candidates = [
    "\"(λͺ…사) 개의 μƒˆλΌ\"μ˜ˆμš”.",
    "\"(λͺ…사) λΆ€λͺ¨λ‚˜ 할아버지, ν• λ¨Έλ‹ˆκ°€ μžμ‹μ΄λ‚˜ 손주λ₯Ό κ·€μ—¬μ›Œν•˜λ©΄μ„œ λΆ€λ₯΄λŠ” 말\"μ΄μ˜ˆμš”."
]

inputs = tokenizer(
    [[prompt, candidate] for candidate in candidates],
    return_tensors="pt",
    padding=True
)

labels = torch.tensor(0).unsqueeze(0)

with torch.no_grad():
    outputs = model(
        **{k: v.unsqueeze(0) for k, v in inputs.items()}, labels=labels
    )

print({i: float(x) for i, x in enumerate(outputs.logits.softmax(1)[0])})

Training data was procured under Creative Commons CC BY-SA 2.0 KR DEED from the National Institute of Korean Language's Basic Korean Dictionary and Standard Korean Dictionary.

Downloads last month
10
Safetensors
Model size
0.1B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support