SentenceTransformer based on DeepChem/ChemBERTa-77M-MLM
This is a sentence-transformers model finetuned from DeepChem/ChemBERTa-77M-MLM. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: DeepChem/ChemBERTa-77M-MLM
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("HassanCS/chemBERTa-tuned-on-ClinTox-3")
# Run inference
sentences = [
'CC#CCn1c(N2CCCC([NH3+])C2)nc2c1c(=O)n(Cc1nc(C)c3ccccc3n1)c(=O)n2C',
'CC12CCC(=O)C=C1CCC1C2C(O)CC2(C)C1CCC2(O)C(=O)COC(=O)CCC1CCCC1',
'CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
all-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9066 |
| cosine_accuracy_threshold | 0.5665 |
| cosine_f1 | 0.951 |
| cosine_f1_threshold | 0.5665 |
| cosine_precision | 0.9068 |
| cosine_recall | 0.9998 |
| cosine_ap | 0.9523 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,000 training samples
- Columns:
smiles1,smiles2, andlabel - Approximate statistics based on the first 1000 samples:
smiles1 smiles2 label type string string int details - min: 3 tokens
- mean: 40.69 tokens
- max: 221 tokens
- min: 4 tokens
- mean: 51.43 tokens
- max: 221 tokens
- 0: ~14.90%
- 1: ~85.10%
- Samples:
smiles1 smiles2 label Cn1c(=O)c2c(ncn2C)n(C)c1=OCc1cc2c(s1)=Nc1ccccc1NC=2N1CCNH+CC11Oc1ccc(OCc2ccccc2)cc1Oc1ccc(CCCC[NH2+]CC(O)c2ccc(O)c(O)c2)cc11OCC(S)CSCC12CCC(=O)C=C1CCC1C2C(O)CC2(C)C1CCC2(O)C(=O)CO0 - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 5,000 evaluation samples
- Columns:
smiles1,smiles2, andlabel - Approximate statistics based on the first 1000 samples:
smiles1 smiles2 label type string string int details - min: 18 tokens
- mean: 56.96 tokens
- max: 209 tokens
- min: 18 tokens
- mean: 61.21 tokens
- max: 244 tokens
- 0: ~10.00%
- 1: ~90.00%
- Samples:
smiles1 smiles2 label CC(=CC(=O)OCCCCCCCCC(=O)[O-])CC1OCC(CC2OC2C(C)C(C)O)C(O)C1OCC(C=CC(C)C(C)(C)O)C1CCC2C(=CC=C3CC(O)CC(O)C3)CCCC21C1C=C1c2cccc([O-])c2C(=O)C2=C([O-])C3(O)C(=O)C(C(N)=O)=C([O-])C(NH+C)C3C(O)C12CC(c1ncncc1F)C(O)(Cn1cncn1)c1ccc(F)cc1F1CC(C)CC1C(=O)N2CCCC2C2(O)OC(NC(=O)C3C=C4c5cccc6[nH]c(Br)c(c56)CC4NH+C3)(C(C)C)C(=O)N12CNH+CCC=C1c2ccccc2Sc2ccc(Cl)cc211 - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 5warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | all-dev_cosine_ap |
|---|---|---|---|---|
| 0.8 | 500 | 0.0264 | 0.0112 | 0.9213 |
| 1.6 | 1000 | 0.0152 | 0.0122 | 0.9362 |
| 2.4 | 1500 | 0.0134 | 0.0128 | 0.9463 |
| 3.2 | 2000 | 0.0112 | 0.0134 | 0.9502 |
| 4.0 | 2500 | 0.01 | 0.0125 | 0.9513 |
| 4.8 | 3000 | 0.0097 | 0.0132 | 0.9523 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- -
Model tree for HassanCS/chemBERTa-tuned-on-ClinTox-3
Base model
DeepChem/ChemBERTa-77M-MLMEvaluation results
- Cosine Accuracy on all devself-reported0.907
- Cosine Accuracy Threshold on all devself-reported0.566
- Cosine F1 on all devself-reported0.951
- Cosine F1 Threshold on all devself-reported0.566
- Cosine Precision on all devself-reported0.907
- Cosine Recall on all devself-reported1.000
- Cosine Ap on all devself-reported0.952