whisper-large-v3-ft-btb-cv-cvad-ca-cy-2511
This model is a fine-tuned version of openai/whisper-large-v3 on the techiaith/banc-trawsgrifiadau-bangor train 25.10, techiaith/commonvoice_23_0_cy train+dev+other_with_excluded main, cymen-arfor/lleisiau-arfor train+dev main, techiaith/commonvoice_vad_cy train main dataset. It achieves the following results on the evaluation set:
- Loss: 0.3775
- Wer: 0.2938
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.4961 | 0.5928 | 500 | 0.5267 | 0.3950 |
| 0.3376 | 1.1849 | 1000 | 0.4401 | 0.3313 |
| 0.3166 | 1.7777 | 1500 | 0.3996 | 0.3110 |
| 0.2334 | 2.3699 | 2000 | 0.3908 | 0.2970 |
| 0.2258 | 2.9627 | 2500 | 0.3775 | 0.2938 |
| 0.1559 | 3.5548 | 3000 | 0.3949 | 0.2881 |
| 0.0973 | 4.1470 | 3500 | 0.4325 | 0.2875 |
| 0.0986 | 4.7398 | 4000 | 0.4370 | 0.2843 |
| 0.0578 | 5.3320 | 4500 | 0.4849 | 0.2897 |
| 0.0568 | 5.9247 | 5000 | 0.4883 | 0.2915 |
| 0.0377 | 6.5169 | 5500 | 0.5269 | 0.2902 |
| 0.0348 | 7.1091 | 6000 | 0.5282 | 0.2905 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.9.0+cu128
- Datasets 4.4.0
- Tokenizers 0.21.4
- Downloads last month
- 176
Model tree for DewiBrynJones/whisper-large-v3-ft-btb-cv-cvad-ca-cy-2511
Base model
openai/whisper-large-v3