wav2vec2-fula-fleurs-full

This model is a fine-tuned version of asr-africa/wav2vec2-xlsr-fula-google-fleurs-5-hours-plus-lm on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8529
  • Wer: 0.5941

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 800
  • num_epochs: 16
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.8429 3.6585 600 2.7091 1.0610
0.6533 7.3171 1200 0.8250 0.6230
0.5052 10.9756 1800 0.8203 0.5984
0.4041 14.6341 2400 0.8529 0.5941

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
0.3B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for DarliAI/kissi-wav2vec2-fula-fleurs-full

Spaces using DarliAI/kissi-wav2vec2-fula-fleurs-full 2