See axolotl config
axolotl version: 0.13.0.dev0
# === Model Configuration ===
base_model: NewEden/Apertus-8B-2509-patched-chatML
load_in_8bit: false
load_in_4bit: false
# === HF Configuration ===
#hub_model_id: ToastyPigeon/muse-marvin-32k-lora-2
#hub_strategy: "every_save"
output_dir: apertus-v2/embedding-trained-2ep
# === Wandb Tracking ===
wandb_project: ApertusV2
# wandb_entity: [WANDB_ENTITY]
wandb_name: embeddings-2ep
# === Training Setup ===
num_epochs: 2
micro_batch_size: 1
gradient_accumulation_steps: 4
sequence_len: 4096
#sequence_parallel_degree: 2
#heads_k_stride: 1
sample_packing: true
#pad_to_sequence_len: true
#temperature: 0.7
#max_steps: 10
# === Evaluation ===
val_set_size: 0.025
evals_per_epoch: 10
#eval_steps: 20
#max_steps: 60
#eval_table_size:
eval_max_new_tokens: 128
#eval_sample_packing: true
#eval_strategy: "no"
# === LoRA Configuration ===
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_target_modules:
# - up_proj
# - down_proj
# - gate_proj
# - q_proj
# - v_proj
# - k_proj
# - o_proj
# - input_layernorm
# - post_attention_layernorm
# - embed_tokens
# - lm_head
lora_fan_in_fan_out:
#peft_use_rslora: true
lora_modules_to_save:
# - embed_tokens
# - lm_head
#fix_untrained_tokens: true
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
unfrozen_parameters:
- embed_tokens
- lm_head
# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
#warmup_steps: 0
warmup_ratio: 0.025
optimizer: adamw_torch_fused
#optimizer: paged_adamw_8bit
#optim_args:
# enable_stochastic_rounding: true
# enable_cautious: true
# enable_8bit: true
# Apollo-mini configuration:
#optim_args: "proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 5e-5
lr_scheduler: cosine
#cosine_min_lr_ratio: 0.2
#lr_scheduler: cosine_with_min_lr
#lr_scheduler_kwargs:
# cosine_min_lr: 1e-6
weight_decay: 0.01
max_grad_norm: 1.0
#warmup_steps: 0
#warmup_ratio: 0.025
# === Data Configuration ===
#
#chat_template: jinja
chat_template: chatml
special_tokens:
# eos_token: "<|im_end|>"
# eos_token: "</s>"
#tokenizer_use_mistral_common: true
shuffle_merged_datasets: true
datasets:
# - path: grimulkan/LimaRP-augmented
# type: chat_template
# field_messages: conversations
# message_property_mappings:
# role: from
# content: value
# - path: allenai/tulu-3-sft-personas-instruction-following
# type: chat_template
# split: train[:10%]
# - path: ToastyPigeon/mixed-medical-reasoning-formatted
# type: chat_template
# data_files: mixed-medical-thinking.json
# split: train[:10%]
# - path: ToastyPigeon/steve-and-marvin
# type: completion
# data_files: marvin.json
# - path: ToastyPigeon/kimi-stories-completion
# type: completion
# - path: ToastyPigeon/new-story-dataset
# type: customcompletion-regex
# type: completion
# data_files: new-story-dataset-v2.json
# - path: allura-org/fujin-instruct-v2
# type: customchatml-regex
# type: chat_template
# field_messages: conversations
# message_property_mappings:
# role: from
# content: value
# - path: ToastyPigeon/some-rp-extended
# type: customchatml-regex
# type: chat_template
# field_messages: conversations
# message_property_mappings:
# role: from
# content: value
# roles_to_train: ["user","assistant"]
- path: allura-forge/koto-instruct-sft-nothink
# type: customchatml-regex
type: chat_template
# split: train[:50%]
# field_messages: conversations
# message_property_mappings:
# role: from
# content: value
# - path: ToastyPigeon/SpringDragon
# type: customcompletion-regex
# type: completion
# split: train
# - path: ToastyPigeon/some-erotica
# type: customcompletion-regex
# type: completion
# split: train[:10%]
# - path: ToastyPigeon/tulu-mini
# type: chat_template
dataset_prepared_path: last_run_prepared
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
#gradient_checkpointing: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
#deepspeed: ../axolotl/deepspeed_configs/zero2.json
# === FSDP Config ===
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_activation_checkpointing: true
fsdp_use_orig_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: ApertusDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
# === Checkpointing ===
#save_steps: 10
saves_per_epoch: 1
save_total_limit: 1
# === Advanced Settings ===
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
apertus-v2/embedding-trained-2ep
This model is a fine-tuned version of NewEden/Apertus-8B-2509-patched-chatML on the allura-forge/koto-instruct-sft-nothink dataset. It achieves the following results on the evaluation set:
- Loss: 1.0096
- Memory/max Active (gib): 5.33
- Memory/max Allocated (gib): 5.33
- Memory/device Reserved (gib): 18.79
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 43
- training_steps: 1736
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.1357 | 6.25 | 5.32 | 12.43 |
| 1.2319 | 0.1002 | 87 | 1.1015 | 5.33 | 5.33 | 18.79 |
| 0.9188 | 0.2003 | 174 | 1.0660 | 5.33 | 5.33 | 18.79 |
| 0.9956 | 0.3005 | 261 | 1.0509 | 5.33 | 5.33 | 18.79 |
| 1.0228 | 0.4007 | 348 | 1.0405 | 5.33 | 5.33 | 18.79 |
| 1.1445 | 0.5009 | 435 | 1.0353 | 5.33 | 5.33 | 18.79 |
| 0.9755 | 0.6010 | 522 | 1.0302 | 5.33 | 5.33 | 18.79 |
| 1.0101 | 0.7012 | 609 | 1.0275 | 5.33 | 5.33 | 18.79 |
| 0.9641 | 0.8014 | 696 | 1.0244 | 5.33 | 5.33 | 18.79 |
| 1.1194 | 0.9016 | 783 | 1.0215 | 5.33 | 5.33 | 18.79 |
| 1.1722 | 1.0012 | 870 | 1.0188 | 5.33 | 5.33 | 18.79 |
| 1.1047 | 1.1013 | 957 | 1.0171 | 5.33 | 5.33 | 18.79 |
| 0.9053 | 1.2015 | 1044 | 1.0152 | 5.33 | 5.33 | 18.79 |
| 0.927 | 1.3017 | 1131 | 1.0139 | 5.33 | 5.33 | 18.79 |
| 1.0436 | 1.4018 | 1218 | 1.0123 | 5.33 | 5.33 | 18.79 |
| 0.9647 | 1.5020 | 1305 | 1.0114 | 5.33 | 5.33 | 18.79 |
| 1.0689 | 1.6022 | 1392 | 1.0105 | 5.33 | 5.33 | 18.79 |
| 1.0046 | 1.7024 | 1479 | 1.0100 | 5.33 | 5.33 | 18.79 |
| 0.9518 | 1.8025 | 1566 | 1.0097 | 5.33 | 5.33 | 18.79 |
| 0.9851 | 1.9027 | 1653 | 1.0096 | 5.33 | 5.33 | 18.79 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 10
Model tree for Columbidae/Apertus-8B-2509-ChatML-trained-embeddings
Base model
NewEden/Apertus-8B-2509-patched-chatML