w2v-bert-2.0-yoruba_naijavoices_500h

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3063
  • Wer: 0.2869
  • Cer: 0.1773

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 160
  • eval_batch_size: 160
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 320
  • total_eval_batch_size: 320
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
1.296 0.6418 1000 0.3281 0.8873 0.6682
0.7527 1.2837 2000 0.3026 0.6976 0.5924
0.6799 1.9255 3000 0.2942 0.6570 0.5782
0.6702 2.5674 4000 0.2912 0.6181 0.5547
0.6192 3.2092 5000 0.2850 0.6172 0.5462
0.6272 3.8511 6000 0.2770 0.5867 0.5276
0.6433 4.4929 7000 0.2780 0.5848 0.5342
0.5611 5.1348 8000 0.2736 0.5638 0.5157
0.5624 5.7766 9000 0.2699 0.5587 0.4997
0.536 6.4185 10000 0.2691 0.5348 0.5023
0.5358 7.0603 11000 0.2629 0.5319 0.4882
0.5841 7.7022 12000 0.2657 0.5271 0.4945
0.5352 8.3440 13000 0.2581 0.5158 0.4748
0.4837 8.9859 14000 0.2563 0.5107 0.4783
0.427 9.6277 15000 0.2542 0.4909 0.4629
0.5264 10.2696 16000 0.2576 0.4992 0.4870
0.4708 10.9114 17000 0.2527 0.4783 0.4622
0.4404 11.5533 18000 0.2492 0.4772 0.4601
0.425 12.1951 19000 0.2470 0.4739 0.4476
0.4104 12.8370 20000 0.2438 0.4574 0.4397
0.413 13.4788 21000 0.2454 0.4526 0.4510
0.4014 14.1207 22000 0.2392 0.4400 0.4422
0.413 14.7625 23000 0.2469 0.4476 0.4474
0.3667 15.4044 24000 0.2358 0.4265 0.4299
0.3913 16.0462 25000 0.2284 0.4222 0.4199
0.4004 16.6881 26000 0.2297 0.4135 0.4109
0.3288 17.3299 27000 0.2269 0.4082 0.4117
0.3252 17.9718 28000 0.2257 0.4048 0.4082
0.3338 18.6136 29000 0.2243 0.4015 0.4030
0.3407 19.2555 30000 0.2175 0.3899 0.3926
0.3314 19.8973 31000 0.2165 0.3910 0.3964
0.2828 20.5392 32000 0.2149 0.3730 0.3865
0.2742 21.1810 33000 0.2153 0.3757 0.3834
0.2767 21.8228 34000 0.2118 0.3665 0.3839
0.3309 22.4647 35000 0.2097 0.3653 0.3743
0.2638 23.1065 36000 0.2052 0.3630 0.3628
0.267 23.7484 37000 0.2066 0.3541 0.3623
0.2392 24.3902 38000 0.2044 0.3468 0.3602
0.3291 25.0321 39000 0.2030 0.3448 0.3565
0.3592 25.6739 40000 0.1998 0.3375 0.3473
0.2334 26.3158 41000 0.1995 0.3350 0.3424
0.2268 26.9576 42000 0.1976 0.3278 0.3418
0.1984 27.5995 43000 0.1993 0.3388 0.3430
0.2398 28.2413 44000 0.1953 0.3390 0.3381
0.234 28.8832 45000 0.1950 0.3250 0.3367
0.1869 29.5250 46000 0.1925 0.3234 0.3253
0.1688 30.1669 47000 0.1899 0.3241 0.3257
0.1642 30.8087 48000 0.1901 0.3252 0.3224
0.197 31.4506 49000 0.1879 0.3058 0.3182
0.1315 32.0924 50000 0.1867 0.3200 0.3159
0.1459 32.7343 51000 0.1844 0.3106 0.3092
0.1299 33.3761 52000 0.1881 0.3168 0.3186
0.1485 34.0180 53000 0.1835 0.3055 0.3053
0.1618 34.6598 54000 0.1838 0.3193 0.3077
0.1109 35.3017 55000 0.1853 0.3095 0.3092
0.154 35.9435 56000 0.1816 0.3105 0.3007
0.1351 36.5854 57000 0.3016 0.3007 0.1817
0.1366 37.2272 58000 0.3128 0.3011 0.1803
0.1481 37.8691 59000 0.3161 0.2959 0.1793
0.1239 38.5109 60000 0.3116 0.2988 0.1808
0.1171 39.1528 61000 0.3021 0.2928 0.1782
0.0956 39.7946 62000 0.3063 0.2869 0.1773

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
157
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for CLEAR-Global/w2v-bert-2.0-yoruba_naijavoices_500h

Finetuned
(388)
this model

Collection including CLEAR-Global/w2v-bert-2.0-yoruba_naijavoices_500h

Evaluation results