ayymen's picture
End of training
c30791c verified
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- automatic-speech-recognition
- CLEAR-Global/luo_19h
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-luo_cv_fleurs_19h-v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-luo_cv_fleurs_19h-v4
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/LUO_19H - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2866
- Wer: 0.3289
- Cer: 0.0998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.025
- training_steps: 100000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:------:|:------:|
| 0.5991 | 6.4935 | 1000 | 0.6712 | 0.5595 | 0.1797 |
| 0.231 | 12.9870 | 2000 | 0.3213 | 0.3638 | 0.1045 |
| 0.1231 | 19.4805 | 3000 | 0.2866 | 0.3285 | 0.0990 |
| 0.0514 | 25.9740 | 4000 | 0.2907 | 0.3122 | 0.0961 |
| 0.0294 | 32.4675 | 5000 | 0.3262 | 0.3073 | 0.0932 |
| 0.0264 | 38.9610 | 6000 | 0.3543 | 0.3047 | 0.0945 |
| 0.0116 | 45.4545 | 7000 | 0.3592 | 0.3104 | 0.0963 |
| 0.009 | 51.9481 | 8000 | 0.3849 | 0.3355 | 0.0949 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1