medgemma-accuracy-run4-optimal
This model is a fine-tuned version of unsloth/medgemma-4b-it-unsloth-bnb-4bit on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 4.4785
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.12
- num_epochs: 3.0
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.4389 | 1.0 | 10 | 5.2530 |
| 0.3558 | 2.0 | 20 | 4.6014 |
| 0.3303 | 3.0 | 30 | 4.4785 |
Framework versions
- PEFT 0.17.1
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for BlacqTangent/medgemma-accuracy-run4-optimal
Base model
google/gemma-3-4b-pt
Finetuned
google/medgemma-4b-pt
Finetuned
google/medgemma-4b-it
Quantized
unsloth/medgemma-4b-it-unsloth-bnb-4bit