Embedding Models
Collection
Fine tuned sentence transformers for document retrieval
•
4 items
•
Updated
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the AdamLucek/legal-rag-positives-synthetic dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AdamLucek/ModernBERT-embed-base-legal-MRL")
# Run inference
sentences = [
'contracting/contracting-assistance-programs/sba-mentor-protege-program (last visited Apr. 19, \n2023). \n5 \n \nprotégé must demonstrate that the added mentor-protégé relationship will not adversely affect the \ndevelopment of either protégé firm (e.g., the second firm may not be a competitor of the first \nfirm).” 13 C.F.R. § 125.9(b)(3).',
'What must the protégé demonstrate about the mentor-protégé relationship?',
'What discretion do district courts have regarding a defendant’s invocation of FOIA exemptions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
dim_768, dim_512, dim_256, dim_128 and dim_64InformationRetrievalEvaluator| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.5286 | 0.5162 | 0.4822 | 0.4158 | 0.3122 |
| cosine_accuracy@3 | 0.5719 | 0.5487 | 0.5286 | 0.4436 | 0.3509 |
| cosine_accuracy@5 | 0.6646 | 0.6414 | 0.5981 | 0.5363 | 0.4359 |
| cosine_accuracy@10 | 0.7311 | 0.7172 | 0.6785 | 0.6105 | 0.4791 |
| cosine_precision@1 | 0.5286 | 0.5162 | 0.4822 | 0.4158 | 0.3122 |
| cosine_precision@3 | 0.5142 | 0.4982 | 0.4699 | 0.3993 | 0.3091 |
| cosine_precision@5 | 0.3941 | 0.3808 | 0.3586 | 0.3128 | 0.2504 |
| cosine_precision@10 | 0.2329 | 0.2272 | 0.2147 | 0.1924 | 0.1498 |
| cosine_recall@1 | 0.1788 | 0.174 | 0.1627 | 0.1426 | 0.105 |
| cosine_recall@3 | 0.4894 | 0.4735 | 0.4493 | 0.3836 | 0.2955 |
| cosine_recall@5 | 0.6121 | 0.5911 | 0.5569 | 0.4878 | 0.3931 |
| cosine_recall@10 | 0.7184 | 0.7023 | 0.6642 | 0.5963 | 0.4681 |
| cosine_ndcg@10 | 0.63 | 0.6138 | 0.5781 | 0.5109 | 0.3956 |
| cosine_mrr@10 | 0.5741 | 0.5593 | 0.5249 | 0.4573 | 0.3509 |
| cosine_map@100 | 0.6186 | 0.6022 | 0.5698 | 0.503 | 0.3939 |
positive and anchor| positive | anchor | |
|---|---|---|
| type | string | string |
| details |
|
|
| positive | anchor |
|---|---|
infrastructure security information,” the information at issue must, “if disclosed . . . reveal vulner- |
What type of information must reveal vulnerabilities if disclosed? |
they have bid.” Oral Arg. Tr. at 42:18–20. Plaintiffs also assert that, should this Court require the |
Where in the document can further discussion about the assertion be found? |
otra parte. Fernández v. San Juan Cement Co., Inc., 118 DPR 713, |
What case is cited with the reference number 118 DPR 713? |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 16gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|---|---|---|---|---|---|---|---|
| 0.8791 | 10 | 5.6528 | - | - | - | - | - |
| 1.0 | 12 | - | 0.5926 | 0.5753 | 0.5457 | 0.4687 | 0.3455 |
| 1.7033 | 20 | 2.4543 | - | - | - | - | - |
| 2.0 | 24 | - | 0.6195 | 0.6066 | 0.5778 | 0.4998 | 0.3828 |
| 2.5275 | 30 | 1.7455 | - | - | - | - | - |
| 3.0 | 36 | - | 0.6292 | 0.6135 | 0.5765 | 0.5057 | 0.3928 |
| 3.3516 | 40 | 1.5499 | - | - | - | - | - |
| 3.7033 | 44 | - | 0.63 | 0.6138 | 0.5781 | 0.5109 | 0.3956 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
answerdotai/ModernBERT-base