deberta_sent4455
This model is a fine-tuned version of kisti/korscideberta on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3113
- Accuracy: 0.9066
- Precision: 0.8995
- Recall: 0.9066
- F1: 0.9011
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.32 | 0.3934 | 500 | 0.2873 | 0.8974 | 0.8870 | 0.8974 | 0.8878 |
| 0.284 | 0.7868 | 1000 | 0.2800 | 0.9022 | 0.8934 | 0.9022 | 0.8897 |
| 0.2797 | 1.1802 | 1500 | 0.2648 | 0.9037 | 0.8977 | 0.9037 | 0.8997 |
| 0.2759 | 1.5736 | 2000 | 0.2597 | 0.9107 | 0.9036 | 0.9107 | 0.9038 |
| 0.2746 | 1.9670 | 2500 | 0.2568 | 0.9100 | 0.9027 | 0.9100 | 0.9030 |
| 0.2523 | 2.3603 | 3000 | 0.3300 | 0.8793 | 0.8898 | 0.8793 | 0.8837 |
| 0.232 | 2.7537 | 3500 | 0.2753 | 0.9077 | 0.8999 | 0.9077 | 0.8996 |
| 0.217 | 3.1471 | 4000 | 0.2962 | 0.9096 | 0.9027 | 0.9096 | 0.9039 |
| 0.2265 | 3.5405 | 4500 | 0.2787 | 0.9107 | 0.9035 | 0.9107 | 0.9034 |
| 0.2094 | 3.9339 | 5000 | 0.2944 | 0.9085 | 0.9008 | 0.9085 | 0.8999 |
| 0.1933 | 4.3273 | 5500 | 0.3132 | 0.9066 | 0.8999 | 0.9066 | 0.9017 |
| 0.1935 | 4.7207 | 6000 | 0.3113 | 0.9066 | 0.8995 | 0.9066 | 0.9011 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.20.3
- Downloads last month
- 4
Model tree for 1yuuuna/deberta_sent4455
Base model
kisti/korscideberta