deberta_sent4455

This model is a fine-tuned version of kisti/korscideberta on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3113
  • Accuracy: 0.9066
  • Precision: 0.8995
  • Recall: 0.9066
  • F1: 0.9011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.32 0.3934 500 0.2873 0.8974 0.8870 0.8974 0.8878
0.284 0.7868 1000 0.2800 0.9022 0.8934 0.9022 0.8897
0.2797 1.1802 1500 0.2648 0.9037 0.8977 0.9037 0.8997
0.2759 1.5736 2000 0.2597 0.9107 0.9036 0.9107 0.9038
0.2746 1.9670 2500 0.2568 0.9100 0.9027 0.9100 0.9030
0.2523 2.3603 3000 0.3300 0.8793 0.8898 0.8793 0.8837
0.232 2.7537 3500 0.2753 0.9077 0.8999 0.9077 0.8996
0.217 3.1471 4000 0.2962 0.9096 0.9027 0.9096 0.9039
0.2265 3.5405 4500 0.2787 0.9107 0.9035 0.9107 0.9034
0.2094 3.9339 5000 0.2944 0.9085 0.9008 0.9085 0.8999
0.1933 4.3273 5500 0.3132 0.9066 0.8999 0.9066 0.9017
0.1935 4.7207 6000 0.3113 0.9066 0.8995 0.9066 0.9011

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for 1yuuuna/deberta_sent4455

Finetuned
(4)
this model