metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: denaya/indoSBERT-large
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- >-
Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar
Pulau Jawa dan Sumatera dengan Nasional (2018=100)
- >-
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
Sulawesi Tengah, 2018-2023
- source_sentence: >-
BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua
tahun 2015?
sentences:
- >-
Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah
Kementrian Pendidikan dan Kebudayaan Menurut Provinsi
2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- >-
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
Sulawesi Tenggara, 2018-2023
- source_sentence: >-
Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per
provinsi, 2018?
sentences:
- >-
Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan
Utama, 2012-2023
- >-
Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan
Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017
- >-
IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor
(Supervisor), 1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023
sentences:
- >-
Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok
Barang, Indonesia, 1999, 2002-2023
- >-
Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan
Pendidikan yang Ditamatkan (ribu rupiah), 2016
- >-
Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas
Dasar Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- >-
Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan
Pemilik (miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- >-
Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut
Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on denaya/indoSBERT-large
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic large v1 test
type: allstats-semantic-large-v1_test
metrics:
- type: cosine_accuracy
value: 0.9878048780487805
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7687987089157104
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9813318473112288
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7652501463890076
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9788771539744302
name: Cosine Precision
- type: cosine_recall
value: 0.9837988826815642
name: Cosine Recall
- type: cosine_ap
value: 0.9973707172812245
name: Cosine Ap
- type: cosine_mcc
value: 0.9722833961709166
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic large v1 dev
type: allstats-semantic-large-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9819310093082679
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.776313841342926
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9723540910360235
name: Cosine F1
- type: cosine_f1_threshold
value: 0.776313841342926
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9640088593576965
name: Cosine Precision
- type: cosine_recall
value: 0.9808450704225352
name: Cosine Recall
- type: cosine_ap
value: 0.9918988791388367
name: Cosine Ap
- type: cosine_mcc
value: 0.959014781948805
name: Cosine Mcc
SentenceTransformer based on denaya/indoSBERT-large
This is a sentence-transformers model finetuned from denaya/indoSBERT-large on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: denaya/indoSBERT-large
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 256 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-large-v1-64-1")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Datasets:
allstats-semantic-large-v1_testandallstats-semantic-large-v1_dev - Evaluated with
BinaryClassificationEvaluator
| Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev |
|---|---|---|
| cosine_accuracy | 0.9878 | 0.9819 |
| cosine_accuracy_threshold | 0.7688 | 0.7763 |
| cosine_f1 | 0.9813 | 0.9724 |
| cosine_f1_threshold | 0.7653 | 0.7763 |
| cosine_precision | 0.9789 | 0.964 |
| cosine_recall | 0.9838 | 0.9808 |
| cosine_ap | 0.9974 | 0.9919 |
| cosine_mcc | 0.9723 | 0.959 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 25,580 training samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 6 tokens
- mean: 17.12 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 20.47 tokens
- max: 42 tokens
- 0: ~70.80%
- 1: ~29.20%
- Samples:
query doc label Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020Jumlah Penghuni Lapas per Kanwil0status pekerjaan utama penduduk usia 15+ yang bekerja, 2020Jumlah Penghuni Lapas per Kanwil0STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020Jumlah Penghuni Lapas per Kanwil0 - Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 5,479 evaluation samples
- Columns:
query,doc, andlabel - Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 17.85 tokens
- max: 35 tokens
- min: 3 tokens
- mean: 21.2 tokens
- max: 31 tokens
- 0: ~71.50%
- 1: ~28.50%
- Samples:
query doc label Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 20170 - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64num_train_epochs: 1warmup_ratio: 0.1fp16: Truedataloader_num_workers: 4load_best_model_at_end: Trueeval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.9750 | - |
| 0 | 0 | - | 0.5420 | - | 0.9766 |
| 0.05 | 20 | 0.4283 | 0.3152 | - | 0.9864 |
| 0.1 | 40 | 0.2681 | 0.3588 | - | 0.9828 |
| 0.15 | 60 | 0.1538 | 0.2478 | - | 0.9866 |
| 0.2 | 80 | 0.1336 | 0.1804 | - | 0.9918 |
| 0.25 | 100 | 0.0763 | 0.2175 | - | 0.9906 |
| 0.3 | 120 | 0.1878 | 0.2453 | - | 0.9862 |
| 0.35 | 140 | 0.0609 | 0.2112 | - | 0.9892 |
| 0.4 | 160 | 0.0933 | 0.1774 | - | 0.9896 |
| 0.45 | 180 | 0.0471 | 0.1552 | - | 0.9933 |
| 0.5 | 200 | 0.0516 | 0.1933 | - | 0.9942 |
| 0.55 | 220 | 0.0421 | 0.1992 | - | 0.9910 |
| 0.6 | 240 | 0.0233 | 0.1728 | - | 0.9933 |
| 0.65 | 260 | 0.0445 | 0.1640 | - | 0.9930 |
| 0.7 | 280 | 0.0157 | 0.1709 | - | 0.9894 |
| 0.75 | 300 | 0.022 | 0.1653 | - | 0.9889 |
| 0.8 | 320 | 0.0192 | 0.1655 | - | 0.9893 |
| 0.85 | 340 | 0.0417 | 0.1509 | - | 0.9913 |
| 0.9 | 360 | 0.0 | 0.1622 | - | 0.9916 |
| 0.95 | 380 | 0.0242 | 0.1543 | - | 0.9919 |
| 1.0 | 400 | 0.0 | 0.1530 | - | 0.9919 |
| -1 | -1 | - | - | 0.9974 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}