Update README.md
Browse files
README.md
CHANGED
|
@@ -18,7 +18,15 @@ library_name: xtuner
|
|
| 18 |
|
| 19 |
llava-llama-3-8b-v1_1 is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).
|
| 20 |
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## Details
|
| 24 |
|
|
@@ -74,19 +82,10 @@ xtuner mmbench xtuner/llava-llama-3-8b-v1_1 \
|
|
| 74 |
|
| 75 |
After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit `mmbench_result.xlsx` to the official MMBench for final evaluation to obtain precision results!
|
| 76 |
|
| 77 |
-
###
|
| 78 |
-
|
| 79 |
-
1. Pretrain (saved by default in `./work_dirs/llava_llama3_8b_instruct_clip_vit_large_p14_336_e1_gpu8_sharegpt4v_pretrain/`)
|
| 80 |
|
| 81 |
-
|
| 82 |
-
NPROC_PER_NODE=8 xtuner train llava_llama3_8b_instruct_clip_vit_large_p14_336_e1_gpu8_sharegpt4v_pretrain --deepspeed deepspeed_zero2 --seed 1024
|
| 83 |
-
```
|
| 84 |
-
|
| 85 |
-
2. Fine-tune (saved by default in `./work_dirs/llava_llama3_8b_instruct_full_clip_vit_large_p14_336_lora_e1_gpu8_internvl_finetune/`)
|
| 86 |
|
| 87 |
-
```bash
|
| 88 |
-
NPROC_PER_NODE=8 xtuner train llava_llama3_8b_instruct_full_clip_vit_large_p14_336_lora_e1_gpu8_internvl_finetune --deepspeed deepspeed_zero2 --seed 1024
|
| 89 |
-
```
|
| 90 |
|
| 91 |
## Citation
|
| 92 |
|
|
|
|
| 18 |
|
| 19 |
llava-llama-3-8b-v1_1 is a LLaVA model fine-tuned from [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) and [CLIP-ViT-Large-patch14-336](https://huggingface.co/openai/clip-vit-large-patch14-336) with [ShareGPT4V-PT](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V) and [InternVL-SFT](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) by [XTuner](https://github.com/InternLM/xtuner).
|
| 20 |
|
| 21 |
+
|
| 22 |
+
**Note: This model is in XTuner LLaVA format.**
|
| 23 |
+
|
| 24 |
+
Resources:
|
| 25 |
+
|
| 26 |
+
- GitHub: [xtuner](https://github.com/InternLM/xtuner)
|
| 27 |
+
- HuggingFace LLaVA format model: [xtuner/llava-llama-3-8b-v1_1-transformers](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers)
|
| 28 |
+
- Official LLaVA format model: [xtuner/llava-llama-3-8b-v1_1-hf](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-hf)
|
| 29 |
+
|
| 30 |
|
| 31 |
## Details
|
| 32 |
|
|
|
|
| 82 |
|
| 83 |
After the evaluation is completed, if it's a development set, it will directly print out the results; If it's a test set, you need to submit `mmbench_result.xlsx` to the official MMBench for final evaluation to obtain precision results!
|
| 84 |
|
| 85 |
+
### Reproduce
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
Please refer to [docs](https://github.com/InternLM/xtuner/tree/main/xtuner/configs/llava/llama3_8b_instruct_clip_vit_large_p14_336#readme).
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
## Citation
|
| 91 |
|