Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3
|
| 3 |
+
library_name: transformers
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
base_model: yentinglin/Llama-3-Taiwan-8B-Instruct-128k
|
| 6 |
+
language:
|
| 7 |
+
- zh
|
| 8 |
+
- en
|
| 9 |
+
tags:
|
| 10 |
+
- zhtw
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# wxxwxxw/Llama-3-Taiwan-8B-Instruct-128k-4bit-AWQ
|
| 14 |
+
This model is quantized using AWQ in 4 bits; the original model is [`yentinglin/Llama-3-Taiwan-8B-Instruct-128k`](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct-128k)
|
| 15 |
+
|
| 16 |
+
# quantize
|
| 17 |
+
```python
|
| 18 |
+
from awq import AutoAWQForCausalLM
|
| 19 |
+
from transformers import AutoTokenizer
|
| 20 |
+
|
| 21 |
+
model_path = 'yentinglin/Llama-3-Taiwan-8B-Instruct-128k'
|
| 22 |
+
quant_path = 'Llama-3-Taiwan-8B-Instruct-128k-AWQ'
|
| 23 |
+
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM", "modules_to_not_convert": []}
|
| 24 |
+
|
| 25 |
+
model = AutoAWQForCausalLM.from_pretrained(model_path)
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 27 |
+
|
| 28 |
+
model.quantize(tokenizer, quant_config=quant_config)
|
| 29 |
+
|
| 30 |
+
# Save quantized model
|
| 31 |
+
model.save_quantized(quant_path)
|
| 32 |
+
tokenizer.save_pretrained(quant_path)
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
# inference with vllm
|
| 36 |
+
```python
|
| 37 |
+
from vllm import LLM, SamplingParams
|
| 38 |
+
|
| 39 |
+
llm = LLM(model='wxxwxxw/Llama-3-Taiwan-8B-Instruct-128k-4bit-AWQ',
|
| 40 |
+
quantization="AWQ",
|
| 41 |
+
tensor_parallel_size=2, # number of gpus
|
| 42 |
+
gpu_memory_utilization=0.9,
|
| 43 |
+
dtype='half'
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
tokenizer = llm.get_tokenizer()
|
| 47 |
+
conversations = tokenizer.apply_chat_template(
|
| 48 |
+
[{'role': 'user', 'content': "how tall is taipei 101"}],
|
| 49 |
+
tokenize=False,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
outputs = llm.generate(
|
| 53 |
+
[conversations],
|
| 54 |
+
SamplingParams(
|
| 55 |
+
temperature=0.5,
|
| 56 |
+
top_p=0.9,
|
| 57 |
+
min_tokens=20,
|
| 58 |
+
max_tokens=1024,
|
| 59 |
+
)
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
for output in outputs:
|
| 63 |
+
generated_ids = output.outputs[0].token_ids
|
| 64 |
+
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 65 |
+
print(generated_text)
|
| 66 |
+
```
|