--- language: bjn language_name: Banjar language_family: austronesian_malay tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-austronesian_malay license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.830 - name: best_isotropy type: isotropy value: 0.8715 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Banjar - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Banjar** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.761x | 3.76 | 0.3950% | 367,048 | | **16k** | 4.164x | 4.17 | 0.4374% | 331,539 | | **32k** | 4.537x | 4.54 | 0.4766% | 304,229 | | **64k** | 4.830x 🏆 | 4.83 | 0.5073% | 285,820 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Wedoro adalah sabuah kampung di Kacamatan Glagah, Kabupatin Lamongan, Prupinsi J...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁w ed oro ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁glagah , ... (+9 more)` | 19 | | 16k | `▁wed oro ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁glagah , ▁kabupatin ... (+8 more)` | 18 | | 32k | `▁wedoro ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁glagah , ▁kabupatin ▁lamongan ... (+7 more)` | 17 | | 64k | `▁wedoro ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁glagah , ▁kabupatin ▁lamongan ... (+7 more)` | 17 | **Sample 2:** `Laburan Baru' adalah sabuah kampung di Kacamatan Paser Belengkong, Kabupatin Pas...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁lab uran ▁baru ' ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁paser ... (+12 more)` | 22 | | 16k | `▁lab uran ▁baru ' ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁paser ... (+11 more)` | 21 | | 32k | `▁laburan ▁baru ' ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁paser ▁belengkong ... (+10 more)` | 20 | | 64k | `▁laburan ▁baru ' ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁paser ▁belengkong ... (+10 more)` | 20 | **Sample 3:** `Nibung adalah sabuah kampung di Kacamatan Selimbau, Kabupatin Kapuas Hulu, Prupi...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁n ib ung ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁sel imb ... (+12 more)` | 22 | | 16k | `▁n ibung ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁selimbau , ▁kabupatin ... (+9 more)` | 19 | | 32k | `▁nibung ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁selimbau , ▁kabupatin ▁kapuas ... (+8 more)` | 18 | | 64k | `▁nibung ▁adalah ▁sabuah ▁kampung ▁di ▁kacamatan ▁selimbau , ▁kabupatin ▁kapuas ... (+8 more)` | 18 | ### Key Findings - **Best Compression:** 64k achieves 4.830x compression - **Lowest UNK Rate:** 8k with 0.3950% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 6,505 | 12.67 | 21,751 | 23.6% | 44.5% | | **2-gram** | Subword | 185 🏆 | 7.53 | 2,788 | 78.2% | 99.5% | | **3-gram** | Word | 3,849 | 11.91 | 17,881 | 32.5% | 51.6% | | **3-gram** | Subword | 1,428 | 10.48 | 20,293 | 34.4% | 80.3% | | **4-gram** | Word | 5,302 | 12.37 | 24,831 | 28.9% | 48.0% | | **4-gram** | Subword | 7,612 | 12.89 | 99,642 | 17.5% | 50.0% | | **5-gram** | Word | 4,712 | 12.20 | 16,656 | 25.7% | 48.4% | | **5-gram** | Subword | 25,009 | 14.61 | 245,459 | 12.3% | 34.0% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `kampung di` | 5,961 | | 2 | `prupinsi kalimantan` | 5,903 | | 3 | `di kacamatan` | 5,625 | | 4 | `adalah sabuah` | 4,211 | | 5 | `sabuah kampung` | 3,806 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `kampung di kacamatan` | 5,212 | | 2 | `sabuah kampung di` | 3,803 | | 3 | `adalah sabuah kampung` | 3,803 | | 4 | `kalimantan selatan indunisia` | 2,201 | | 5 | `prupinsi kalimantan selatan` | 2,188 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `sabuah kampung di kacamatan` | 3,802 | | 2 | `adalah sabuah kampung di` | 3,801 | | 3 | `prupinsi kalimantan selatan indunisia` | 2,154 | | 4 | `prupinsi kalimantan barat indunisia` | 1,806 | | 5 | `yaitu sabuting kampung di` | 1,356 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `adalah sabuah kampung di kacamatan` | 3,801 | | 2 | `yaitu sabuting kampung di kacamatan` | 1,253 | | 3 | `indunisia gĂ©ografi watas wilayah watas` | 1,113 | | 4 | `gĂ©ografi watas wilayah watas wilayah` | 1,099 | | 5 | `watas wilayah watas wilayah kacamatan` | 739 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n` | 365,243 | | 2 | `n _` | 194,875 | | 3 | `n g` | 152,971 | | 4 | `a _` | 138,836 | | 5 | `k a` | 132,349 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n _` | 156,222 | | 2 | `a n g` | 84,871 | | 3 | `_ k a` | 76,502 | | 4 | `n g _` | 75,610 | | 5 | `_ m a` | 57,961 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n g _` | 48,934 | | 2 | `t a n _` | 34,621 | | 3 | `n a n g` | 29,979 | | 4 | `a t a n` | 29,470 | | 5 | `_ n a n` | 28,658 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ n a n g` | 28,407 | | 2 | `n a n g _` | 27,864 | | 3 | `a t a n _` | 22,485 | | 4 | `m a t a n` | 17,997 | | 5 | `_ w a n _` | 17,178 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 185 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~34% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.8469 | 1.799 | 5.67 | 99,056 | 15.3% | | **1** | Subword | 0.7172 | 1.644 | 4.59 | 2,416 | 28.3% | | **2** | Word | 0.2337 | 1.176 | 1.48 | 559,810 | 76.6% | | **2** | Subword | 0.6823 | 1.605 | 4.16 | 11,092 | 31.8% | | **3** | Word | 0.0561 | 1.040 | 1.08 | 824,984 | 94.4% | | **3** | Subword | 0.7802 | 1.717 | 3.90 | 46,118 | 22.0% | | **4** | Word | 0.0150 🏆 | 1.010 | 1.02 | 890,043 | 98.5% | | **4** | Subword | 0.6544 | 1.574 | 2.81 | 179,736 | 34.6% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `di kacamatan konang kabupatin sanggau prupinsi kalimantan tengah mesir india indunisia watas wilayah...` 2. `nang baisi banyak banar dalam bahasa utama liga 3 m 1 sampai pamulaan wan takananya barupa` 3. `wan manangani kajahatan gasan hintalu diploid buhannya kawa jua gasan pahitungan hisab nitu angin tu...` **Context Size 2:** 1. `kampung di kacamatan teluk sampit pambagian administratip kacamatan tualan hulu pambagian administra...` 2. `prupinsi kalimantan timur indunisia makanan nangkaya tempe matan kacang kacangan imbah disangrai bad...` 3. `di kacamatan menyuke kabupatin landak prupinsi kalimantan barat indunisia gĂ©ografi watas wilayah kac...` **Context Size 3:** 1. `kampung di kacamatan tambakrejo kabupatin bojonegoro prupinsi jawa timur jujuhutan` 2. `adalah sabuah kampung di kacamatan semitau kabupatin kapuas hulu prupinsi kalimantan barat indunisia...` 3. `sabuah kampung di kacamatan long iram kabupatin kutai barat prupinsi kalimantan timur indunisia gĂ©og...` **Context Size 4:** 1. `sabuah kampung di kacamatan bengalon kabupatin kutai timur prupinsi kalimantan timur indunisia indun...` 2. `adalah sabuah kampung di kacamatan ketungau tengah kabupatin sintang prupinsi kalimantan barat indun...` 3. `yaitu sabuting kampung di kacamatan karang intan kabupatin banjar prupinsi kalimantan selatan induni...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `awanaangik_ta,_t` 2. `_g_viabara_pa_li` 3. `ng_ksawarbunteru` **Context Size 2:** 1. `anyan_adangga,_br` 2. `n_kalambang_pem_a` 3. `ng_dew,_dibantu,_` **Context Size 3:** 1. `an_jejani_andan_ka` 2. `ang_sambara,_pres,` 3. `_kacamatas_palima_` **Context Size 4:** 1. `ang_maman_banjadi_h` 2. `tan_bakcanganis_rik` 3. `nang_kampung_dalah_` ### Key Findings - **Best Predictability:** Context-4 (word) with 98.5% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (179,736 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 41,351 | | Total Tokens | 992,449 | | Mean Frequency | 24.00 | | Median Frequency | 4 | | Frequency Std Dev | 278.70 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | di | 27,655 | | 2 | nang | 27,387 | | 3 | wan | 17,250 | | 4 | adalah | 10,715 | | 5 | lawan | 9,581 | | 6 | indunisia | 9,420 | | 7 | kacamatan | 9,139 | | 8 | kalimantan | 8,368 | | 9 | kampung | 7,824 | | 10 | matan | 7,698 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | beregszĂĄsziovĂĄ | 2 | | 2 | koĆĄice | 2 | | 3 | satian | 2 | | 4 | extreme | 2 | | 5 | frisna | 2 | | 6 | ropang | 2 | | 7 | caknan | 2 | | 8 | muktamar | 2 | | 9 | sandon | 2 | | 10 | sĂ©kuĂ©ns | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0491 | | RÂČ (Goodness of Fit) | 0.995109 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 35.5% | | Top 1,000 | 62.4% | | Top 5,000 | 81.6% | | Top 10,000 | 88.8% | ### Key Findings - **Zipf Compliance:** RÂČ=0.9951 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 35.5% of corpus - **Long Tail:** 31,351 words needed for remaining 11.2% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8715 | 0.3303 | N/A | N/A | | **mono_64d** | 64 | 0.8409 | 0.2593 | N/A | N/A | | **mono_128d** | 128 | 0.5527 | 0.2130 | N/A | N/A | | **aligned_32d** | 32 | 0.8715 🏆 | 0.3312 | 0.0420 | 0.2520 | | **aligned_64d** | 64 | 0.8409 | 0.2582 | 0.0680 | 0.3160 | | **aligned_128d** | 128 | 0.5527 | 0.2256 | 0.1380 | 0.4260 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.8715 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2696. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 13.8% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.423** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ma` | manentang, maut, marked | | `-pa` | parachute, pattern, pamain | | `-ba` | bantam, babakan, barambai | | `-di` | dibawakan, dihimpun, dibatasi | | `-ka` | karoseri, kampanye, kahala | | `-ta` | tatikap, tahitung, tato | | `-man` | manentang, manuruti, manggalungsur | | `-pe` | penyelenggara, pengadilan, pertapaan | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-n` | pattern, babakan, tikinan | | `-an` | babakan, tikinan, kanaan | | `-a` | kurbannya, kahala, dhaka | | `-ng` | manentang, gondang, rahang | | `-kan` | babakan, dibawakan, menguntungkan | | `-ya` | kurbannya, karibnya, makanannya | | `-nya` | kurbannya, karibnya, makanannya | | `-akan` | babakan, dibawakan, maruntuhakan | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `anga` | 1.62x | 225 contexts | sanga, manga, nanga | | `unga` | 2.11x | 57 contexts | bunga, rungan, bungas | | `ngan` | 1.95x | 58 contexts | pangan, rungan, bongan | | `anja` | 1.76x | 82 contexts | sanja, ganja, anjat | | `ntan` | 1.89x | 49 contexts | antan, intan, antang | | `mant` | 1.94x | 39 contexts | manta, manti, mantel | | `ting` | 1.63x | 79 contexts | keting, tingah, eating | | `ndun` | 2.15x | 24 contexts | rundun, indung, mendung | | `dala` | 1.77x | 38 contexts | dalam, dalas, adalah | | `atin` | 1.82x | 26 contexts | atina, batin, latin | | `pung` | 1.91x | 21 contexts | apung, pungsi, capung | | `adal` | 1.91x | 16 contexts | badal, kadal, adalah | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-pa` | `-n` | 207 words | palayanan, paampihan | | `-pa` | `-an` | 195 words | palayanan, paampihan | | `-di` | `-n` | 149 words | diasingakan, dimanangakan | | `-ma` | `-n` | 144 words | manyurangan, mampartahanakan | | `-ka` | `-n` | 144 words | kamantirian, kajiwaan | | `-di` | `-an` | 140 words | diasingakan, dimanangakan | | `-ma` | `-an` | 136 words | manyurangan, mampartahanakan | | `-di` | `-kan` | 133 words | diasingakan, dimanangakan | | `-ka` | `-an` | 133 words | kamantirian, kajiwaan | | `-ma` | `-kan` | 126 words | mampartahanakan, maungkaiakan | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | kaputingannya | **`ka-puti-ng-an-nya`** | 9.0 | `puti` | | dimanpaatakan | **`di-man-pa-atak-an`** | 9.0 | `atak` | | manjadiakannya | **`man-jadi-akan-nya`** | 7.5 | `jadi` | | mamandiakan | **`ma-man-di-akan`** | 7.5 | `akan` | | disayangakan | **`di-sa-yang-akan`** | 7.5 | `yang` | | peradangan | **`pe-rada-ng-an`** | 7.5 | `rada` | | dimakamakan | **`di-ma-ka-makan`** | 7.5 | `makan` | | kakacangan | **`ka-ka-cang-an`** | 7.5 | `cang` | | disalanggarakan | **`di-sa-langgar-akan`** | 7.5 | `langgar` | | takapinggirakan | **`ta-ka-pinggir-akan`** | 7.5 | `pinggir` | | dihasilakannya | **`di-hasil-akan-nya`** | 7.5 | `hasil` | | pahitungan | **`pa-hitu-ng-an`** | 7.5 | `hitu` | | papadahannya | **`pa-pa-dahan-nya`** | 7.5 | `dahan` | | sabalumannya | **`sa-ba-luman-nya`** | 7.5 | `luman` | | kahiringan | **`ka-hiri-ng-an`** | 7.5 | `hiri` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Banjar shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.83x) | | N-gram | **2-gram** | Lowest perplexity (185) | | Markov | **Context-4** | Highest predictability (98.5%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **RÂČ (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* RÂČ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* RÂČ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - đŸ€— Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - đŸ‘€ Author: [Omar Kamali](https://huggingface.co/omarkamali) - đŸ€ Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 19:11:59*