--- language: bcl language_name: Central Bikol language_family: austronesian_philippine_central tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-austronesian_philippine_central license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.810 - name: best_isotropy type: isotropy value: 0.8247 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Central Bikol - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Central Bikol** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.957x | 3.96 | 0.0152% | 354,491 | | **16k** | 4.291x | 4.29 | 0.0165% | 326,860 | | **32k** | 4.572x | 4.58 | 0.0176% | 306,791 | | **64k** | 4.810x 🏆 | 4.81 | 0.0185% | 291,605 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `An sarong taon sa Gregoryanong kalendaryo. Enero Pebrero Marso Abril Mayo Hunyo ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁an ▁sarong ▁taon ▁sa ▁gregoryanong ▁kalendaryo . ▁enero ▁pebrero ▁marso ... (+9 more)` | 19 | | 16k | `▁an ▁sarong ▁taon ▁sa ▁gregoryanong ▁kalendaryo . ▁enero ▁pebrero ▁marso ... (+9 more)` | 19 | | 32k | `▁an ▁sarong ▁taon ▁sa ▁gregoryanong ▁kalendaryo . ▁enero ▁pebrero ▁marso ... (+9 more)` | 19 | | 64k | `▁an ▁sarong ▁taon ▁sa ▁gregoryanong ▁kalendaryo . ▁enero ▁pebrero ▁marso ... (+9 more)` | 19 | **Sample 2:** `Si Donald James "Donny" Lucas (Montreal) dating sarong Amerikanong entertainer.` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁si ▁d onald ▁james ▁" don ny " ▁luc as ... (+10 more)` | 20 | | 16k | `▁si ▁donald ▁james ▁" don ny " ▁lucas ▁( mont ... (+7 more)` | 17 | | 32k | `▁si ▁donald ▁james ▁" don ny " ▁lucas ▁( mont ... (+7 more)` | 17 | | 64k | `▁si ▁donald ▁james ▁" don ny " ▁lucas ▁( mont ... (+7 more)` | 17 | **Sample 3:** `An Yenon sarong baryo sa Abi na lugar kan gobyerno lokal sa Cross River State, N...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁an ▁y en on ▁sarong ▁baryo ▁sa ▁ab i ▁na ... (+18 more)` | 28 | | 16k | `▁an ▁y en on ▁sarong ▁baryo ▁sa ▁ab i ▁na ... (+17 more)` | 27 | | 32k | `▁an ▁yen on ▁sarong ▁baryo ▁sa ▁abi ▁na ▁lugar ▁kan ... (+15 more)` | 25 | | 64k | `▁an ▁yen on ▁sarong ▁baryo ▁sa ▁abi ▁na ▁lugar ▁kan ... (+15 more)` | 25 | ### Key Findings - **Best Compression:** 64k achieves 4.810x compression - **Lowest UNK Rate:** 8k with 0.0152% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 29,762 | 14.86 | 139,543 | 13.5% | 31.1% | | **2-gram** | Subword | 215 🏆 | 7.75 | 6,829 | 72.7% | 99.3% | | **3-gram** | Word | 81,081 | 16.31 | 219,146 | 7.5% | 19.3% | | **3-gram** | Subword | 1,801 | 10.81 | 46,307 | 33.2% | 73.8% | | **4-gram** | Word | 128,131 | 16.97 | 304,782 | 9.2% | 17.0% | | **4-gram** | Subword | 10,353 | 13.34 | 249,114 | 18.9% | 43.8% | | **5-gram** | Word | 55,135 | 15.75 | 164,721 | 16.0% | 24.8% | | **5-gram** | Subword | 39,111 | 15.26 | 711,663 | 11.0% | 29.6% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `sa mga` | 30,516 | | 2 | `an mga` | 27,434 | | 3 | `kan mga` | 22,662 | | 4 | `iyo an` | 17,275 | | 5 | `nin mga` | 16,825 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `panluwas na takod` | 5,506 | | 2 | `mga panluwas na` | 4,909 | | 3 | `toltolan mga panluwas` | 2,791 | | 4 | `para sa mga` | 2,778 | | 5 | `igwa ining sukol` | 2,227 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `mga panluwas na takod` | 4,613 | | 2 | `toltolan mga panluwas na` | 2,791 | | 3 | `igwa ining sukol na` | 2,139 | | 4 | `philippine standard geographic code` | 1,751 | | 5 | `sa sensus kan igwa` | 1,728 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `toltolan mga panluwas na takod` | 2,656 | | 2 | `sa sensus kan igwa ining` | 1,724 | | 3 | `standard geographic code local governance` | 1,722 | | 4 | `com philippine standard geographic code` | 1,722 | | 5 | `philatlas com philippine standard geographic` | 1,722 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n` | 1,358,991 | | 2 | `a _` | 1,303,105 | | 3 | `n _` | 1,232,546 | | 4 | `_ s` | 834,968 | | 5 | `n a` | 797,325 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n _` | 702,654 | | 2 | `_ n a` | 541,439 | | 3 | `_ s a` | 524,860 | | 4 | `n g _` | 465,207 | | 5 | `_ k a` | 378,564 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ s a _` | 337,217 | | 2 | `_ n a _` | 333,981 | | 3 | `k a n _` | 236,687 | | 4 | `_ k a n` | 232,949 | | 5 | `_ a n _` | 213,433 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ k a n _` | 225,191 | | 2 | `_ m g a _` | 166,824 | | 3 | `_ n i n _` | 131,940 | | 4 | `a s i n _` | 125,892 | | 5 | `_ a s i n` | 125,534 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 215 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~30% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.7779 | 1.715 | 6.29 | 329,127 | 22.2% | | **1** | Subword | 0.9163 | 1.887 | 5.39 | 7,145 | 8.4% | | **2** | Word | 0.3186 | 1.247 | 1.99 | 2,064,138 | 68.1% | | **2** | Subword | 0.5336 | 1.448 | 3.35 | 38,469 | 46.6% | | **3** | Word | 0.1355 | 1.098 | 1.28 | 4,087,355 | 86.5% | | **3** | Subword | 0.6380 | 1.556 | 3.61 | 128,967 | 36.2% | | **4** | Word | 0.0498 🏆 | 1.035 | 1.08 | 5,215,534 | 95.0% | | **4** | Subword | 0.6487 | 1.568 | 3.06 | 465,409 | 35.1% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `sa tipan an apod na dinadalihigan kan taon kan komputasyon asin ipagbabalik sa tahaw kan taon` 2. `na nag eeksister an mga mimetikong kalibangbang patag dakol na coronet an pahayag tanganing ipabisto...` 3. `an mga komposisyon kan kompositor asin ngapit iyong watawat ang halaman asin gurutom suya sumo mga` **Context Size 2:** 1. `sa mga minasunod the crucifixion saint anthony wisconsin si gross sarong multi partidong estado kata...` 2. `an mga osipon sarong babaeng kustomer ining lalaki winaki siya nin labing 300 bilyon historya si jam...` 3. `kan mga aldaw bago ini ibugtak sa sitwasyon kan halawig na kasaysayan asin sarong best seller asin` **Context Size 3:** 1. `panluwas na takod opisyal na websityo toltolan paadalan sa kabikolan` 2. `mga panluwas na takod philatlas com philippine standard geographic code local governance performance...` 3. `toltolan mga panluwas na takod philatlas com philippine standard geographic code local governance pe...` **Context Size 4:** 1. `mga panluwas na takod agi agi kan kawat na scrabblre kinua 06 11 16 mga bagay bagay dapit sa` 2. `toltolan mga panluwas na takod si iu sa universal music japan koreanong artista` 3. `igwa ining sukol na 173 70 kilometro kwadrado na kadagaan asin namumugtak sa ikaduwang distrito an d...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_c_naco'a_nimgho` 2. `asinarosy_sig-em` 3. `n,_kursud_wanari` **Context Size 2:** 1. `anta_pincion_they` 2. `a_cagkan_kabong_i` 3. `n_an_kahabaharopi` **Context Size 3:** 1. `an_sa_laog,_asin_l` 2. `_na_at_sa_unra_san` 3. `_sa_na_lugang_nin_` **Context Size 4:** 1. `_sa_kastian_communi` 2. `_na_dormasya_sa_pag` 3. `kan_iban.[3]_an_sa_` ### Key Findings - **Best Predictability:** Context-4 (word) with 95.0% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (465,409 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 132,282 | | Total Tokens | 5,940,352 | | Mean Frequency | 44.91 | | Median Frequency | 4 | | Frequency Std Dev | 1779.06 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | sa | 339,632 | | 2 | na | 337,250 | | 3 | an | 230,137 | | 4 | kan | 225,822 | | 5 | mga | 168,493 | | 6 | nin | 132,058 | | 7 | asin | 125,726 | | 8 | sarong | 62,546 | | 9 | si | 54,313 | | 10 | the | 42,923 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | akkuly | 2 | | 2 | sucuk | 2 | | 3 | zhaparova | 2 | | 4 | altynbekov | 2 | | 5 | wanatabe | 2 | | 6 | kordon | 2 | | 7 | sobringaran | 2 | | 8 | khanid | 2 | | 9 | ganish | 2 | | 10 | niceno | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0205 | | R² (Goodness of Fit) | 0.994695 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 43.3% | | Top 1,000 | 63.7% | | Top 5,000 | 79.4% | | Top 10,000 | 85.4% | ### Key Findings - **Zipf Compliance:** R²=0.9947 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 43.3% of corpus - **Long Tail:** 122,282 words needed for remaining 14.6% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8247 | 0.3483 | N/A | N/A | | **mono_64d** | 64 | 0.8238 | 0.2714 | N/A | N/A | | **mono_128d** | 128 | 0.8094 | 0.1968 | N/A | N/A | | **aligned_32d** | 32 | 0.8247 🏆 | 0.3494 | 0.2280 | 0.5780 | | **aligned_64d** | 64 | 0.8238 | 0.2693 | 0.3700 | 0.7100 | | **aligned_128d** | 128 | 0.8094 | 0.1977 | 0.4780 | 0.8080 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.8247 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2722. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 47.8% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **-0.162** | Low formulaic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-pa` | pagraranggo, pandapog, pananakop | | `-na` | naquit, nagana, nagmamato | | `-ma` | maghelang, malos, mangyans | | `-pag` | pagraranggo, pagrehistro, pagsasalin | | `-pi` | pigrorokyaw, pigsaladawan, pigpapainitan | | `-nag` | nagana, nagmamato, nagashino | | `-ka` | kajaman, kalipunan, kambodya | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-n` | pigsaladawan, pigpapainitan, esperidion | | `-a` | smegma, emanuela, estrela | | `-ng` | maghelang, gyalwang, gansing | | `-an` | pigsaladawan, pigpapainitan, kajaman | | `-on` | esperidion, pasteurization, oryentasyon | | `-ong` | silensyong, mapabulong, otong | | `-ang` | maghelang, gyalwang, tatabang | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `agka` | 1.94x | 108 contexts | pagka, nagka, magka | | `inak` | 2.14x | 67 contexts | inakô, inaka, inakò | | `atio` | 2.24x | 51 contexts | ratio, patio, matios | | `syon` | 2.04x | 72 contexts | mosyon, nasyon, losyon | | `agpa` | 1.87x | 88 contexts | ragpa, agpay, magpa | | `hili` | 2.23x | 39 contexts | hilig, chili, hilir | | `asyo` | 2.00x | 57 contexts | basyo, rasyo, nasyo | | `ista` | 1.67x | 114 contexts | istar, bista, istat | | `ndan` | 1.73x | 78 contexts | indan, ndang, andan | | `agin` | 1.84x | 44 contexts | sagin, magin, nagin | | `nagp` | 2.05x | 26 contexts | nagpe, nagpa, nagpur | | `embr` | 2.14x | 22 contexts | membro, embryo, myembro | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-pi` | `-n` | 77 words | pinagkukuanan, pinagkakaputan | | `-pa` | `-n` | 75 words | paluan, painiton | | `-ka` | `-n` | 75 words | kakagaton, katangaan | | `-na` | `-a` | 74 words | nagbabareta, nagsaranga | | `-pi` | `-an` | 72 words | pinagkukuanan, pinagkakaputan | | `-pa` | `-a` | 67 words | pamareta, padilla | | `-ka` | `-an` | 67 words | katangaan, kagadanan | | `-na` | `-n` | 66 words | naiisihan, nahaman | | `-ma` | `-a` | 64 words | manusela, mababareta | | `-na` | `-an` | 56 words | naiisihan, nahaman | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | pinakamalumoy | **`pi-na-ka-ma-lumoy`** | 9.0 | `lumoy` | | pinakamakosog | **`pi-na-ka-ma-kosog`** | 9.0 | `kosog` | | pinakagrabeng | **`pi-na-ka-grabe-ng`** | 9.0 | `grabe` | | pinakaposibleng | **`pi-na-ka-posible-ng`** | 9.0 | `posible` | | pinakadarakula | **`pi-na-ka-darakula`** | 7.5 | `darakula` | | pagpapasakit | **`pag-pa-pa-sakit`** | 7.5 | `sakit` | | nakakasakop | **`na-ka-ka-sakop`** | 7.5 | `sakop` | | nakakahimo | **`na-ka-ka-himo`** | 7.5 | `himo` | | pinakasikat | **`pi-na-ka-sikat`** | 7.5 | `sikat` | | nakakalihis | **`na-ka-ka-lihis`** | 7.5 | `lihis` | | pagkakamukna | **`pag-ka-ka-mukna`** | 7.5 | `mukna` | | nagpapaluwas | **`nag-pa-pa-luwas`** | 7.5 | `luwas` | | pinakaligtas | **`pi-na-ka-ligtas`** | 7.5 | `ligtas` | | nagpapamidbid | **`nag-pa-pa-midbid`** | 7.5 | `midbid` | | nakakalayog | **`na-ka-ka-layog`** | 7.5 | `layog` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Central Bikol shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.81x) | | N-gram | **2-gram** | Lowest perplexity (215) | | Markov | **Context-4** | Highest predictability (95.0%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 18:57:54*