--- language: bar language_name: Bavarian language_family: germanic_west_continental tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-germanic_west_continental license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.003 - name: best_isotropy type: isotropy value: 0.8432 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Bavarian - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Bavarian** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.167x | 3.17 | 0.0430% | 1,042,115 | | **16k** | 3.477x | 3.48 | 0.0472% | 949,394 | | **32k** | 3.753x | 3.75 | 0.0509% | 879,530 | | **64k** | 4.003x 🏆 | 4.00 | 0.0543% | 824,531 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Forstern is a Gmoa im obaboarischn Landkroas Arrdeng. Im Netz Gemeinde Forstern ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁oba boarischn ▁landkroas ▁ar ... (+19 more)` | 29 | | 16k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+15 more)` | 25 | | 32k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+13 more)` | 23 | | 64k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+12 more)` | 22 | **Sample 2:** `Marlboro County. Obgruafa am 22. Feba is a County in South Carolina in da USA. B...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more)` | 28 | | 16k | `▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more)` | 28 | | 32k | `▁marl boro ▁county . ▁obgruafa ▁am ▁ 2 2 . ... (+17 more)` | 27 | | 64k | `▁marlboro ▁county . ▁obgruafa ▁am ▁ 2 2 . ▁feba ... (+16 more)` | 26 | **Sample 3:** `Hill County is a County in Montana in da USA. Beleg Im Netz in Montana` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 | | 16k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 | | 32k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 | | 64k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 | ### Key Findings - **Best Compression:** 64k achieves 4.003x compression - **Lowest UNK Rate:** 8k with 0.0430% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 27,199 | 14.73 | 109,780 | 13.0% | 31.5% | | **2-gram** | Subword | 361 🏆 | 8.50 | 7,796 | 60.7% | 98.3% | | **3-gram** | Word | 40,782 | 15.32 | 128,747 | 12.7% | 26.6% | | **3-gram** | Subword | 3,796 | 11.89 | 62,893 | 20.6% | 60.9% | | **4-gram** | Word | 56,976 | 15.80 | 186,218 | 13.7% | 25.1% | | **4-gram** | Subword | 27,410 | 14.74 | 362,482 | 9.1% | 28.4% | | **5-gram** | Word | 38,882 | 15.25 | 130,277 | 15.7% | 28.0% | | **5-gram** | Subword | 124,788 | 16.93 | 1,153,187 | 4.9% | 16.5% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `vo da` | 26,508 | | 2 | `is a` | 22,819 | | 3 | `in da` | 22,392 | | 4 | `im netz` | 14,484 | | 5 | `vo de` | 13,424 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `beleg im netz` | 3,530 | | 2 | `in da usa` | 3,478 | | 3 | `da beziak hod` | 2,393 | | 4 | `im netz in` | 2,005 | | 5 | `sitz vo da` | 1,888 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `beleg im netz in` | 1,575 | | 2 | `da sitz vo da` | 1,482 | | 3 | `is a county in` | 1,429 | | 4 | `in da usa da` | 1,407 | | 5 | `a katastralgmoa in da` | 1,387 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `flĂ€chn ausgwiesn gwesn ende woarn` | 1,385 | | 2 | `hektar ois laundwiatschoftliche flĂ€chn gnutzt` | 1,385 | | 3 | `forstwirtschaftli gnutzte flĂ€chn ausgwiesn gwesn` | 1,385 | | 4 | `hektar sand ois forstwirtschaftli gnutzte` | 1,385 | | 5 | `ois laundwiatschoftliche flĂ€chn gnutzt und` | 1,385 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `n _` | 701,951 | | 2 | `a _` | 667,528 | | 3 | `c h` | 636,525 | | 4 | `_ d` | 557,323 | | 5 | `e _` | 479,658 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `s c h` | 303,728 | | 2 | `_ d e` | 253,515 | | 3 | `_ d a` | 172,902 | | 4 | `n d _` | 169,557 | | 5 | `u n d` | 168,298 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ d a _` | 132,086 | | 2 | `_ d e _` | 130,374 | | 3 | `u n d _` | 127,939 | | 4 | `_ u n d` | 119,950 | | 5 | `i s c h` | 99,379 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ u n d _` | 118,720 | | 2 | `_ v o _ d` | 44,559 | | 3 | `_ i n _ d` | 37,539 | | 4 | `i s c h e` | 33,643 | | 5 | `_ d e s _` | 31,011 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 361 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~17% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.7076 | 1.633 | 5.17 | 567,851 | 29.2% | | **1** | Subword | 0.9427 | 1.922 | 6.61 | 3,387 | 5.7% | | **2** | Word | 0.2111 | 1.158 | 1.52 | 2,930,161 | 78.9% | | **2** | Subword | 0.9146 | 1.885 | 5.83 | 22,370 | 8.5% | | **3** | Word | 0.0663 | 1.047 | 1.11 | 4,443,260 | 93.4% | | **3** | Subword | 0.8673 | 1.824 | 4.66 | 130,496 | 13.3% | | **4** | Word | 0.0224 🏆 | 1.016 | 1.04 | 4,937,652 | 97.8% | | **4** | Subword | 0.7772 | 1.714 | 3.53 | 608,299 | 22.3% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `de gepidn und bbö 178 bukit tinggi 72 canon triplex a 7 hz ws touro college` 2. `da effentlichn stroßn am 9 verletzter blick af de gebietskeapaschoftn in bayern gwen dem meearesspia...` 3. `und alfonso cuarĂłn timothy j nö öbb infra öbb pv tullnerfelder bahn rengschbuach grĂŒnthal geografie ...` **Context Size 2:** 1. `vo da blaa oim aussa und entschdengan seine wichdigstn litararischn weak da voda vo da gmoa kirchham` 2. `is a kuaza a1 kuaza mit klima b launga und zwoa enklkinda da hoeneß uli z bad` 3. `in da katastralgmoa dobranberg zsammgrechnt 84 bauflĂ€chn mit 44 633 m und 58 gĂ€rten auf 135 526` **Context Size 3:** 1. `in da usa beleg im netz in virginia` 2. `beleg im netz in missouri` 3. `da beziak hod 39 451 eihwohna da sitz vo da vawoitung is leoti da beziak hod 12 786` **Context Size 4:** 1. `beleg im netz in nebraska` 2. `da sitz vo da kroasvawoitung vo oanign landkroas liegt außahoib vom landkroas oft in da namasgleichn...` 3. `is a county in wisconsin in da usa beleg im netz in der emilia romagna des europapreises` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_w.adaiwenieurio` 2. `a_lidovicröniser` 3. `e_hmbrkum_runĂ­s_` **Context Size 2:** 1. `n_fc_rein_wieforo` 2. `a_da_oschofferkea` 3. `chr_koi'seybunds_` **Context Size 3:** 1. `schburyan_no_san_d` 2. `_dem_scusdecentisc` 3. `_daument_in_und_zu` **Context Size 4:** 1. `_da_letztn_de_ameri` 2. `_de_marekd_om_auf_1` 3. `und_botta_200+_maß_` ### Key Findings - **Best Predictability:** Context-4 (word) with 97.8% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (608,299 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 212,365 | | Total Tokens | 5,339,853 | | Mean Frequency | 25.14 | | Median Frequency | 3 | | Frequency Std Dev | 712.67 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | de | 136,913 | | 2 | da | 136,168 | | 3 | und | 119,185 | | 4 | in | 101,699 | | 5 | a | 92,218 | | 6 | vo | 91,584 | | 7 | is | 86,664 | | 8 | im | 70,677 | | 9 | des | 33,854 | | 10 | hod | 30,719 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | mechanisches | 2 | | 2 | stabilisierungssystem | 2 | | 3 | voeffentlecht | 2 | | 4 | innpuls | 2 | | 5 | buagstej | 2 | | 6 | nuwenburg | 2 | | 7 | kulturweges | 2 | | 8 | spessartprojektes | 2 | | 9 | terrassnfermig | 2 | | 10 | tuamhigi | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 0.9730 | | RÂČ (Goodness of Fit) | 0.999444 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 34.1% | | Top 1,000 | 55.0% | | Top 5,000 | 70.0% | | Top 10,000 | 76.7% | ### Key Findings - **Zipf Compliance:** RÂČ=0.9994 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 34.1% of corpus - **Long Tail:** 202,365 words needed for remaining 23.3% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.8296 | 0.3402 | N/A | N/A | | **mono_64d** | 64 | 0.8410 | 0.2581 | N/A | N/A | | **mono_128d** | 128 | 0.8432 🏆 | 0.1737 | N/A | N/A | | **aligned_32d** | 32 | 0.8296 | 0.3341 | 0.0920 | 0.3960 | | **aligned_64d** | 64 | 0.8410 | 0.2543 | 0.1940 | 0.6020 | | **aligned_128d** | 128 | 0.8432 | 0.1862 | 0.2860 | 0.6780 | ### Key Findings - **Best Isotropy:** mono_128d with 0.8432 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.2578. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 28.6% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **0.694** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-sc` | scharmbeck, schitznvaein, schiaf | | `-sch` | scharmbeck, schitznvaein, schiaf | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-n` | ßabran, unterwestern, weidesdn | | `-en` | metallen, theologen, mĂŒnzen | | `-ng` | wondering, pisang, umwondlung | | `-er` | grĂ€berfelder, eichenauer, weydenhammer | | `-ch` | hoierschbouch, weißabgleich, obergreutschach | | `-ung` | umwondlung, auflösung, ausbroadung | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `ster` | 2.00x | 209 contexts | aster, ester, stern | | `schl` | 1.77x | 287 contexts | eschl, ischl, schlau | | `schr` | 1.99x | 137 contexts | schrit, schrim, schreg | | `gsch` | 1.77x | 181 contexts | gschai, gschdö, gschmo | | `uach` | 1.99x | 99 contexts | buach, huach, suach | | `itsc` | 2.19x | 64 contexts | gitsch, nitsch, kitsch | | `icht` | 1.54x | 345 contexts | eicht, wicht, richt | | `atio` | 2.26x | 45 contexts | ratio, natio, nation | | `nisc` | 1.77x | 126 contexts | nisch, nischn, nischt | | `reic` | 1.78x | 97 contexts | reich, reichd, reichl | | `chof` | 2.07x | 50 contexts | schof, schoft, schofn | | `tion` | 1.73x | 93 contexts | tione, aktion, notion | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-sc` | `-n` | 52 words | schbondan, schbĂŒĂŒn | | `-sc` | `-er` | 16 words | schatzgrĂ€ber, schweinsteiger | | `-sc` | `-en` | 13 words | schlampen, screven | | `-sc` | `-ng` | 11 words | schĂ€dlbedeckung, schraubvabindung | | `-sc` | `-ch` | 10 words | scharlach, schbruch | | `-sc` | `-ung` | 4 words | schĂ€dlbedeckung, schraubvabindung | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | schnitzen | **`sch-nitz-en`** | 6.0 | `nitz` | | enthaltenen | **`enthalt-en-en`** | 6.0 | `enthalt` | | schwensen | **`sch-wens-en`** | 6.0 | `wens` | | herrnhausen | **`herrnhaus-en`** | 4.5 | `herrnhaus` | | schrottenberg | **`sch-rottenberg`** | 4.5 | `rottenberg` | | heaschafamĂŒlien | **`heaschafamĂŒli-en`** | 4.5 | `heaschafamĂŒli` | | fawoitung | **`fawoit-ung`** | 4.5 | `fawoit` | | regulĂ€ren | **`regulĂ€r-en`** | 4.5 | `regulĂ€r` | | leitmeritzer | **`leitmeritz-er`** | 4.5 | `leitmeritz` | | jungfrauen | **`jungfrau-en`** | 4.5 | `jungfrau` | | gespenster | **`gespenst-er`** | 4.5 | `gespenst` | | dynastien | **`dynasti-en`** | 4.5 | `dynasti` | | referenten | **`referent-en`** | 4.5 | `referent` | | birkenhainer | **`birkenhain-er`** | 4.5 | `birkenhain` | | rettersheimer | **`rettersheim-er`** | 4.5 | `rettersheim` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Bavarian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.00x) | | N-gram | **2-gram** | Lowest perplexity (361) | | Markov | **Context-4** | Highest predictability (97.8%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **RÂČ (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* RÂČ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* RÂČ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - đŸ€— Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - đŸ‘€ Author: [Omar Kamali](https://huggingface.co/omarkamali) - đŸ€ Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 19:01:37*