omarkamali commited on
Commit
7d0a68c
·
verified ·
1 Parent(s): 02b9bba

Upload all models and assets for as (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +208 -173
  3. models/embeddings/aligned/as_128d.bin +3 -0
  4. models/embeddings/aligned/as_128d.meta.json +1 -0
  5. models/embeddings/aligned/as_128d.projection.npy +3 -0
  6. models/embeddings/aligned/as_128d_metadata.json +8 -0
  7. models/embeddings/aligned/as_32d.bin +3 -0
  8. models/embeddings/aligned/as_32d.meta.json +1 -0
  9. models/embeddings/aligned/as_32d.projection.npy +3 -0
  10. models/embeddings/aligned/as_32d_metadata.json +8 -0
  11. models/embeddings/aligned/as_64d.bin +3 -0
  12. models/embeddings/aligned/as_64d.meta.json +1 -0
  13. models/embeddings/aligned/as_64d.projection.npy +3 -0
  14. models/embeddings/aligned/as_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/as_128d.bin +2 -2
  16. models/embeddings/monolingual/as_128d_metadata.json +1 -1
  17. models/embeddings/monolingual/as_32d.bin +2 -2
  18. models/embeddings/monolingual/as_32d_metadata.json +1 -1
  19. models/embeddings/monolingual/as_64d.bin +2 -2
  20. models/embeddings/monolingual/as_64d_metadata.json +1 -1
  21. models/subword_markov/as_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/as_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/as_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/as_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/as_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/as_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/as_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/as_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/as_2gram_subword.parquet +2 -2
  30. models/subword_ngram/as_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/as_3gram_subword.parquet +2 -2
  32. models/subword_ngram/as_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/as_4gram_subword.parquet +2 -2
  34. models/subword_ngram/as_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/as_5gram_subword.parquet +3 -0
  36. models/subword_ngram/as_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/as_tokenizer_16k.model +2 -2
  38. models/tokenizer/as_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/as_tokenizer_32k.model +2 -2
  40. models/tokenizer/as_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/as_tokenizer_64k.model +2 -2
  42. models/tokenizer/as_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/as_tokenizer_8k.model +2 -2
  44. models/tokenizer/as_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/as_vocabulary.parquet +2 -2
  46. models/vocabulary/as_vocabulary_metadata.json +9 -9
  47. models/word_markov/as_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/as_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/as_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/as_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: as
3
- language_name: AS
4
  language_family: indoaryan_eastern
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-indoaryan_eastern
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.534
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.8566
30
  - name: vocabulary_size
31
  type: vocab
32
  value: 0
33
  generated: 2026-01-03
34
  ---
35
 
36
- # AS - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **AS** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
- - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
  - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
@@ -80,10 +90,10 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
- | **8k** | 3.446x | 3.45 | 0.0759% | 1,436,355 |
84
- | **16k** | 3.889x | 3.89 | 0.0856% | 1,272,728 |
85
- | **32k** | 4.259x | 4.26 | 0.0938% | 1,162,147 |
86
- | **64k** | 4.534x 🏆 | 4.53 | 0.0999% | 1,091,630 |
87
 
88
  ### Tokenization Examples
89
 
@@ -98,29 +108,29 @@ Below are sample sentences tokenized with each vocabulary size:
98
  | 32k | `▁জয়ন গৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ... (+8 more)` | 18 |
99
  | 64k | `▁জয়নগৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ▁পৰগনা ... (+7 more)` | 17 |
100
 
101
- **Sample 2:** `প্ৰদীপ আচাৰ্য্য একবিংশ শতাব্দীৰ অসমৰ এগৰাকী প্ৰসিদ্ধ লেখক, সমালোচক সংক্ষিপ্ত জ...`
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
- | 8k | `▁প্ৰদীপ ▁আচাৰ্য ্য ▁এক বিংশ ▁শতা ব্দ ীৰ ▁অসমৰ ▁এগৰাকী ... (+10 more)` | 20 |
106
- | 16k | `▁প্ৰদীপ ▁আচাৰ্য ্য ▁একবিংশ ▁শতাব্দীৰ ▁অসমৰ ▁এগৰাকী ▁প্ৰসিদ্ধ ▁লেখক , ... (+7 more)` | 17 |
107
- | 32k | `▁প্ৰদীপ ▁আচাৰ্য ্য ▁একবিংশ ▁শতাব্দীৰ ▁অসমৰ ▁এগৰাকী ▁প্ৰসিদ্ধ ▁লেখক , ... (+7 more)` | 17 |
108
- | 64k | `▁প্ৰদীপ ▁আচাৰ্য ্য ▁একবিংশ ▁শতাব্দীৰ ▁অসমৰ ▁এগৰাকী ▁প্ৰসিদ্ধ ▁লেখক , ... (+7 more)` | 17 |
109
 
110
- **Sample 3:** `মাটিকালি অৱস্থান কৰ্মচাৰী সা-সুবিধা তথ্যসূত্ৰ বিদ্যালয়সমূহ`
111
 
112
  | Vocab | Tokens | Count |
113
  |-------|--------|-------|
114
- | 8k | `▁মাটিকালি ▁অৱস্থান ▁কৰ্মচাৰী ▁সা - সু বিধা ▁তথ্যসূত্ৰ ▁বিদ্যালয় সমূহ` | 10 |
115
- | 16k | `▁মাটিকালি ▁অৱস্থান ▁কৰ্মচাৰী ▁সা - সু বিধা ▁তথ্যসূত্ৰ ▁বিদ্যালয়সমূহ` | 9 |
116
- | 32k | `▁মাটিকালি ▁অৱস্থান ▁কৰ্মচাৰী ▁সা - সুবিধা ▁তথ্যসূত্ৰ ▁বিদ্যালয়সমূহ` | 8 |
117
- | 64k | `▁মাটিকালি ▁অৱস্থান ▁কৰ্মচাৰী ▁সা - সুবিধা ▁তথ্যসূত্ৰ ▁বিদ্যালয়সমূহ` | 8 |
118
 
119
 
120
  ### Key Findings
121
 
122
- - **Best Compression:** 64k achieves 4.534x compression
123
- - **Lowest UNK Rate:** 8k with 0.0759% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
126
 
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
137
 
138
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
  |--------|---------|------------|---------|----------------|------------------|-------------------|
140
- | **2-gram** | Word | 60,931 | 15.89 | 198,049 | 8.3% | 21.5% |
141
- | **2-gram** | Subword | 2,317 🏆 | 11.18 | 62,544 | 34.0% | 69.3% |
142
- | **3-gram** | Word | 105,867 | 16.69 | 226,215 | 4.9% | 14.7% |
143
- | **3-gram** | Subword | 21,008 | 14.36 | 364,128 | 13.2% | 35.4% |
144
- | **4-gram** | Word | 237,754 | 17.86 | 355,974 | 2.4% | 7.8% |
145
- | **4-gram** | Subword | 113,775 | 16.80 | 1,477,005 | 7.8% | 20.9% |
 
 
146
 
147
  ### Top 5 N-grams by Size
148
 
@@ -150,68 +162,88 @@ Below are sample sentences tokenized with each vocabulary size:
150
 
151
  | Rank | N-gram | Count |
152
  |------|--------|-------|
153
- | 1 | `কৰা হয়` | 27,116 |
154
- | 2 | `কৰা হৈছিল` | 11,596 |
155
- | 3 | `হ ল` | 10,746 |
156
- | 4 | `লাভ কৰে` | 10,053 |
157
- | 5 | `কৰা হৈছে` | 9,448 |
158
 
159
  **3-grams (Word):**
160
 
161
  | Rank | N-gram | Count |
162
  |------|--------|-------|
163
- | 1 | `ব্যৱহাৰ কৰা হয়` | 3,039 |
164
- | 2 | `হ ব পাৰে` | 3,023 |
165
- | 3 | `বুলি কোৱা হয়` | 2,966 |
166
- | 4 | `গণ্য কৰা হয়` | 2,121 |
167
- | 5 | `ডিগ্ৰী লাভ কৰে` | 1,927 |
168
 
169
  **4-grams (Word):**
170
 
171
  | Rank | N-gram | Count |
172
  |------|--------|-------|
173
- | 1 | `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ` | 1,636 |
174
- | 2 | `বুলি গণ্য কৰা হয়` | 1,147 |
175
- | 3 | `স্নাতক ডিগ্ৰী লাভ কৰে` | 819 |
176
- | 4 | `তথ্য উৎস বাহ্যিক সংযোগ` | 772 |
177
- | 5 | `হিচাপে গণ��য কৰা হয়` | 749 |
 
 
 
 
 
 
 
 
 
 
178
 
179
  **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
- | 1 | `ৰ _` | 1,253,155 |
184
- | 2 | `ত _` | 617,790 |
185
- | 3 | `_ আ` | 557,646 |
186
- | 4 | `। _` | 441,423 |
187
- | 5 | `_ ক` | 431,976 |
188
 
189
  **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
- | 1 | `আ ৰু _` | 234,191 |
194
- | 2 | `_ আ ৰু` | 234,020 |
195
- | 3 | `_ ক ৰি` | 132,035 |
196
- | 4 | `_ তে ওঁ` | 130,105 |
197
- | 5 | `ন ৰ _` | 119,581 |
198
 
199
  **4-grams (Subword):**
200
 
201
  | Rank | N-gram | Count |
202
  |------|--------|-------|
203
- | 1 | `_ আ ৰু _` | 233,600 |
204
- | 2 | `ছি ল । _` | 95,977 |
205
- | 3 | `_ ক ৰা _` | 84,715 |
206
- | 4 | `_ তে ওঁ _` | 61,201 |
207
- | 5 | `_ _` | 61,142 |
 
 
 
 
 
 
 
 
 
 
208
 
209
 
210
  ### Key Findings
211
 
212
- - **Best Perplexity:** 2-gram (subword) with 2,317
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
- - **Coverage:** Top-1000 patterns cover ~21% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
227
 
228
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
- | **1** | Word | 0.8462 | 1.798 | 7.80 | 533,621 | 15.4% |
231
- | **1** | Subword | 0.8352 | 1.784 | 12.14 | 14,852 | 16.5% |
232
- | **2** | Word | 0.2679 | 1.204 | 1.70 | 4,157,114 | 73.2% |
233
- | **2** | Subword | 0.7097 | 1.635 | 5.34 | 180,337 | 29.0% |
234
- | **3** | Word | 0.0819 | 1.058 | 1.15 | 7,059,669 | 91.8% |
235
- | **3** | Subword | 0.5596 | 1.474 | 3.48 | 962,394 | 44.0% |
236
- | **4** | Word | 0.0273 🏆 | 1.019 | 1.04 | 8,117,676 | 97.3% |
237
- | **4** | Subword | 0.4358 | 1.353 | 2.26 | 3,350,979 | 56.4% |
238
 
239
  ### Generated Text Samples (Word-based)
240
 
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
242
 
243
  **Context Size 1:**
244
 
245
- 1. `আৰু আন্তঃৰাষ্ট্ৰীয় ত্ৰিবৰ্ষীয় নতুন আলোচনী বিভাগ আৰু তিনিটা ভাগত কেইটামান ষ্ট্ৰ মেল ফেৰাৰ হেলেনা দ্...`
246
- 2. `কৰা আয়াতসমূহক সাধাৰণতে এই লিংগ জাতীয় উৎসৱ পৰ্ব অনুষ্ঠান হিচাপে ব্যৱহাৰ সংস্কৃতিক কেন্দ্ৰৰ centre s...`
247
- 3. `হয় মিনিক থিয়েম ৩৬ চৌৰঙ্গী উপন্যাসৰ নতুন ব্ৰডগজ ইঞ্জিন বিদ্যুতৰ অনুমতি দিযা নি পকড় কাফীৰ`
248
 
249
  **Context Size 2:**
250
 
251
- 1. `কৰা হয় পিছলৈ কানৱ ঋষিৰ আশ্ৰমত বাস কৰে স্থিতি তথা সংৰক্ষণ তথ্যসূত্ৰ বহিঃসংযোগ ইণ্টাৰনেট মুভি ডাটাবেছ...`
252
- 2. `কৰা হৈছিল ৰডবোৰে এটা সংখ্যাৰ অংকৰ যোগফলৰ দ্বাৰা পোৱা গৈছিল উদ্ভিদ ৰসায়ন টিনোস্প ৰা কৰ্ডিফ লিয়াত এল...`
253
- 3. `হ ল ছিৰাম চিক্‌নেছ সদৃশ লক্ষণ প্ৰদৰ্শনকাৰী মধ্যমীয়া আৰু যুক্তিসংগত বিশ্লেষণৰ জৰিয়তে শ্ৰীকৃষ্ণ কীৰ্...`
254
 
255
  **Context Size 3:**
256
 
257
- 1. `ব্যৱহাৰ কৰা হয় এটা জনপ্ৰিয় কিংবদন্তি অনুসৰি বৈষ্ণৱ পণ্ডিতসকলে শৈৱ বুলি প্ৰত্যাখ্যান কৰাৰ পিছত তেওঁ...`
258
- 2. `হ ব পাৰে ৰচনাৰ তাৰিখ ঐতৰেয় ব্ৰাহ্মণ কিছু নিশ্চিতভাৱে খ্ৰীষ্টপূৰ্ব ১ম সহস্ৰাব্দৰ সম্ভৱতঃ ইয়াৰ প্ৰথম...`
259
- 3. `বুলি কোৱা হয় চনৰ ১১ ফেব্ৰুৱাৰীত বাংলাদেশত আলিৰ মৃত্যু হয় তেওঁৰ মৃত্যুৰ পিছত নিউয়ৰ্ক টাইমছে তেওঁক ...`
260
 
261
  **Context Size 4:**
262
 
263
- 1. `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ আনুষ্ঠানিক mamata banerjee official all india trinamool congress party pro...`
264
- 2. `বুলি গণ্য কৰা হয় একশৰণ নাম ধৰ্মৰ অনুগামীসকলে গুণমালা পুথিখনক অতি পৱিত্ৰ জ্ঞান কৰি গুৰু আসনত প্ৰতিষ্...`
265
- 3. `স্নাতক ডিগ্ৰী লাভ কৰে আৰু বেৰিষ্টাৰ ইজাজ হুছেইন বাটালৱীৰ চেম্বাৰত যোগদান কৰে চনত লাহোৰ উচ্চ ন্যায়াল...`
266
 
267
 
268
  ### Generated Text Samples (Subword-based)
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
271
 
272
  **Context Size 1:**
273
 
274
- 1. `_ভাৱেশনত-_পলবাদলকৰা_`
275
- 2. `ৰ_বিয়া_usis_ই_সেই_ধ্ব`
276
- 3. `কবৰু__মহিলাৰশ্বি__৩৬`
277
 
278
  **Context Size 2:**
279
 
280
- 1. `ৰ_ডে'_+_(spishaver`
281
- 2. `ত_উপন্যাসৰ_ওপৰ_ওৰে_চক্ৰ`
282
- 3. `_আৰু_পাৰে।_চলন_বোমা-কাশ্মী`
283
 
284
  **Context Size 3:**
285
 
286
- 1. `আৰু_মৰলৰ_মেক্সিমফৰ_এটা-আ`
287
- 2. `_আৰু_লাইকা"_এটা_উত্তৰ_শ্ৰেষ্ঠ`
288
- 3. `_কৰিবলৈ_গঢ়_লৈ_যোৱা_সমসাম`
289
 
290
  **Context Size 4:**
291
 
292
- 1. `_আৰু_সামাজিক_অৱ_ছিংগাপুৰত_২`
293
- 2. `ছিল।_ইভান্সে_প্ৰাণীবিজ্ঞান,_ক্ৰমবৰ্ধ`
294
- 3. `_কৰা_হয়।_ষ্টাফ_ৰিপৰ্টাৰ_২৪_`
295
 
296
 
297
  ### Key Findings
298
 
299
- - **Best Predictability:** Context-4 (word) with 97.3% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
- - **Memory Trade-off:** Larger contexts require more storage (3,350,979 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
@@ -314,64 +346,64 @@ Below are text samples generated from each subword-based Markov chain model:
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
- | Vocabulary Size | 219,027 |
318
- | Total Tokens | 8,615,852 |
319
- | Mean Frequency | 39.34 |
320
  | Median Frequency | 4 |
321
- | Frequency Std Dev | 763.95 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
- | 1 | আৰু | 234,273 |
328
- | 2 | কৰা | 88,269 |
329
- | 3 | হয় | 83,006 |
330
- | 4 | কৰে | 74,637 |
331
- | 5 | এই | 61,800 |
332
- | 6 | তেওঁ | 61,727 |
333
- | 7 | পৰা | 52,844 |
334
- | 8 | কৰিছিল | 48,735 |
335
- | 9 | বাবে | 48,165 |
336
- | 10 | চনত | 47,181 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
340
  | Rank | Word | Frequency |
341
  |------|------|-----------|
342
- | 1 | চেকিজাং | 2 |
343
- | 2 | জটৱানী | 2 |
344
- | 3 | জটৱানীৰ | 2 |
345
- | 4 | ভিটাইৰ | 2 |
346
- | 5 | সিন্ধীজ | 2 |
347
- | 6 | দেৱচন্দ্ৰৰ | 2 |
348
- | 7 | দেৱচন্দ্ৰ | 2 |
349
- | 8 | প্ৰাণনাথৰ | 2 |
350
- | 9 | প্ৰাণনাথে | 2 |
351
- | 10 | গুৰদ্বাৰ | 2 |
352
 
353
  ### Zipf's Law Analysis
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
- | Zipf Coefficient | 1.0086 |
358
- | R² (Goodness of Fit) | 0.989742 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
362
 
363
  | Top N Words | Coverage |
364
  |-------------|----------|
365
- | Top 100 | 25.4% |
366
- | Top 1,000 | 50.8% |
367
- | Top 5,000 | 71.8% |
368
- | Top 10,000 | 79.6% |
369
 
370
  ### Key Findings
371
 
372
- - **Zipf Compliance:** R²=0.9897 indicates excellent adherence to Zipf's law
373
- - **High Frequency Dominance:** Top 100 words cover 25.4% of corpus
374
- - **Long Tail:** 209,027 words needed for remaining 20.4% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
387
 
388
  ### 5.1 Cross-Lingual Alignment
389
 
390
- > *Note: Multilingual alignment visualization not available for this language.*
 
 
391
 
392
 
393
  ### 5.2 Model Comparison
394
 
395
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
  |-------|-----------|----------|------------------|---------------|----------------|
397
- | **mono_32d** | 32 | 0.8476 | 0.3643 | N/A | N/A |
398
- | **mono_64d** | 64 | 0.8566 🏆 | 0.2729 | N/A | N/A |
399
- | **mono_128d** | 128 | 0.8399 | 0.2134 | N/A | N/A |
 
 
 
400
 
401
  ### Key Findings
402
 
403
- - **Best Isotropy:** mono_64d with 0.8566 (more uniform distribution)
404
- - **Semantic Density:** Average pairwise similarity of 0.2836. Lower values indicate better semantic separation.
405
- - **Alignment Quality:** No aligned models evaluated in this run.
406
  - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
  ## 6. Morphological Analysis (Experimental)
410
 
411
- > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
-
413
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
 
415
  ### 6.1 Productivity & Complexity
416
 
417
  | Metric | Value | Interpretation | Recommendation |
418
  |--------|-------|----------------|----------------|
419
- | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
- | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
 
422
  ### 6.2 Affix Inventory (Productive Units)
423
 
@@ -430,8 +465,8 @@ These are the most productive prefixes and suffixes identified by sampling the v
430
  #### Productive Suffixes
431
  | Suffix | Examples |
432
  |--------|----------|
433
- | `-ৰ` | নিৰ্ধাৰনৰ, স্পঞ্জৰ, চেমেলেৰ |
434
- | `-াৰ` | শীতলাৰ, গুজ্জাৰ, ভেঁ‌ড়াৰ |
435
 
436
  ### 6.3 Bound Stems (Lexical Roots)
437
 
@@ -439,18 +474,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
439
 
440
  | Stem | Cohesion | Substitutability | Examples |
441
  |------|----------|------------------|----------|
442
- | `ther` | 3.32x | 64 contexts | other, theri, there |
443
- | `ight` | 3.29x | 55 contexts | bight, tight, might |
444
- | `ress` | 3.32x | 41 contexts | dress, press, presse |
445
- | `indi` | 3.32x | 39 contexts | hindi, indie, pindi |
446
- | `vers` | 3.14x | 46 contexts | evers, overs, verse |
447
- | `nter` | 3.21x | 38 contexts | inter, enter, hunter |
448
- | `olog` | 3.28x | 34 contexts | oology, biology, zoology |
449
- | `ment` | 3.17x | 38 contexts | cement, mentor, mentha |
450
- | `ctio` | 3.34x | 31 contexts | action, diction, section |
451
- | `atio` | 3.18x | 37 contexts | fatio, ratio, nation |
452
- | `stor` | 3.19x | 33 contexts | storm, jstor, story |
453
- | `iver` | 3.17x | 26 contexts | liver, river, giver |
454
 
455
  ### 6.4 Affix Compatibility (Co-occurrence)
456
 
@@ -465,26 +500,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
465
 
466
  | Word | Suggested Split | Confidence | Stem |
467
  |------|-----------------|------------|------|
468
- | লিথুৱানিয়াৰ | **`লিথুৱানিয়-াৰ`** | 1.5 | `লিথুৱানিয়` |
469
- | পুনৰ্ব্যৱহাৰ | **`পুনৰ্ব্যৱহ-াৰ`** | 1.5 | `পুনৰ্ব্যৱহ` |
470
- | প্লাছিয়াৰ | **`প্লাছিয়-াৰ`** | 1.5 | `প্লাছিয়` |
471
- | ক্ষেত্ৰাধিকাৰ | **`ক্ষেত্ৰাধিক-াৰ`** | 1.5 | `ক্ষেত্ৰাধিক` |
472
- | বিন্ধোৱাৰ | **`বিন্ধোৱ-াৰ`** | 1.5 | `বিন্ধোৱ` |
473
- | চুলিক্‌ফাৰ | **`চুলিক্‌ফ-াৰ`** | 1.5 | `চুলিক্‌ফ` |
474
- | ইউনিলিভাৰ | **`ইউনিলিভ-াৰ`** | 1.5 | `ইউনিলিভ` |
475
- | চিৰস্তাদাৰ | **`চিৰস্তাদ-াৰ`** | 1.5 | `চিৰস্তাদ` |
476
- | লাখটকীয়াৰ | **`লাখটকীয়-াৰ`** | 1.5 | `লাখটকীয়` |
477
- | জাতিসত্তাৰ | **`জাতিসত্ত-াৰ`** | 1.5 | `জাতিসত্ত` |
478
- | দৰিদ্ৰতাৰ | **`দৰিদ্ৰত-াৰ`** | 1.5 | `দৰিদ্ৰত` |
479
- | ছিলভেষ্টাৰ | **`ছিলভেষ্ট-াৰ`** | 1.5 | `ছিলভেষ্ট` |
480
- | চিলভেষ্টাৰ | **`চিলভেষ্ট-াৰ`** | 1.5 | `চিলভেষ্ট` |
481
- | বাগ্মীতাৰ | **`বাগ্মীত-াৰ`** | 1.5 | `বাগ্মীত` |
482
- | নিয়ন্ত্ৰণহীনতাৰ | **`নিয়ন্ত্ৰণহীনত-াৰ`** | 1.5 | `নিয়ন্ত্ৰণহীনত` |
483
 
484
  ### 6.6 Linguistic Interpretation
485
 
486
  > **Automated Insight:**
487
- The language AS appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
488
 
489
  ---
490
  ## 7. Summary & Recommendations
@@ -495,9 +530,9 @@ The language AS appears to be more isolating or has a highly fixed vocabulary. W
495
 
496
  | Component | Recommended | Rationale |
497
  |-----------|-------------|-----------|
498
- | Tokenizer | **64k BPE** | Best compression (4.53x) |
499
- | N-gram | **2-gram** | Lowest perplexity (2,317) |
500
- | Markov | **Context-4** | Highest predictability (97.3%) |
501
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
502
 
503
 
@@ -711,4 +746,4 @@ MIT License - Free for academic and commercial use.
711
  ---
712
  *Generated by Wikilangs Models Pipeline*
713
 
714
- *Report Date: 2026-01-03 05:56:00*
 
1
  ---
2
  language: as
3
+ language_name: Assamese
4
  language_family: indoaryan_eastern
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-indoaryan_eastern
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.542
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.8547
40
  - name: vocabulary_size
41
  type: vocab
42
  value: 0
43
  generated: 2026-01-03
44
  ---
45
 
46
+ # Assamese - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Assamese** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
  - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
 
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.450x | 3.45 | 0.0757% | 1,416,711 |
94
+ | **16k** | 3.894x | 3.89 | 0.0855% | 1,255,391 |
95
+ | **32k** | 4.266x | 4.27 | 0.0937% | 1,145,685 |
96
+ | **64k** | 4.542x 🏆 | 4.54 | 0.0997% | 1,076,075 |
97
 
98
  ### Tokenization Examples
99
 
 
108
  | 32k | `▁জয়ন গৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ... (+8 more)` | 18 |
109
  | 64k | `▁জয়নগৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ▁পৰগনা ... (+7 more)` | 17 |
110
 
111
+ **Sample 2:** `হাবুং মৈদাম হৈছে আহোমসকলৰ পঞ্চমৰাজধানী হাবুংৰ টাইভেটিত অৱস্থিত দুটা প্ৰাচীন মৈদা...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
+ | 8k | `▁হাব ▁মৈ াম ▁হৈছে ▁আহোম সকলৰ ▁পঞ্চম ... (+31 more)` | 41 |
116
+ | 16k | `▁হাব ুং ▁মৈ দাম ▁হৈছে ▁আহোম সকলৰ ▁পঞ্চম ৰাজ ধান ... (+26 more)` | 36 |
117
+ | 32k | `▁হাব ুং ▁মৈদাম ▁হৈছে ▁আহোমসকলৰ ▁পঞ্চম ৰাজ ধানী ▁হাব ুং ... (+21 more)` | 31 |
118
+ | 64k | `▁হাবুং ▁মৈদাম ▁হৈছে ▁আহোমসকলৰ ▁পঞ��চম ৰাজধানী ▁হাবুং ▁টাই ভেটিত ... (+16 more)` | 26 |
119
 
120
+ **Sample 3:** `ভাৰতীয় ন্যায় সংহিতা (IAST: Bhāratīya Nyāya Saṃhitā), ভাৰতীয় গণৰাজ্যৰ অপৰাধ সং...`
121
 
122
  | Vocab | Tokens | Count |
123
  |-------|--------|-------|
124
+ | 8k | `▁ভাৰতীয় ▁ন্যায় ▁সংহ িতা ▁( i ast : ▁bh ā ... (+27 more)` | 37 |
125
+ | 16k | `▁ভাৰতীয় ▁ন্যায় ▁সংহিতা ▁( i ast : ▁bh ā rat ... (+23 more)` | 33 |
126
+ | 32k | `▁ভাৰতীয় ▁ন্যায় ▁সংহিতা ▁( iast : ▁bh ā rat ī ... (+20 more)` | 30 |
127
+ | 64k | `▁ভাৰতীয় ▁ন্যায় ▁সংহিতা ▁( iast : ▁bh ā rat īya ... (+18 more)` | 28 |
128
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.542x compression
133
+ - **Lowest UNK Rate:** 8k with 0.0757% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
 
 
147
 
148
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
  |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 62,472 | 15.93 | 206,764 | 8.3% | 21.4% |
151
+ | **2-gram** | Subword | 2,308 🏆 | 11.17 | 63,567 | 34.0% | 69.4% |
152
+ | **3-gram** | Word | 109,754 | 16.74 | 237,526 | 5.0% | 14.6% |
153
+ | **3-gram** | Subword | 20,939 | 14.35 | 371,943 | 13.3% | 35.5% |
154
+ | **4-gram** | Word | 247,178 | 17.92 | 371,701 | 2.3% | 7.7% |
155
+ | **4-gram** | Subword | 113,780 | 16.80 | 1,515,602 | 7.8% | 20.9% |
156
+ | **5-gram** | Word | 182,489 | 17.48 | 239,039 | 1.9% | 7.3% |
157
+ | **5-gram** | Subword | 319,720 | 18.29 | 2,664,609 | 5.1% | 14.4% |
158
 
159
  ### Top 5 N-grams by Size
160
 
 
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
+ | 1 | `কৰা হয়` | 29,188 |
166
+ | 2 | `কৰা হৈছিল` | 12,508 |
167
+ | 3 | `হ ল` | 11,276 |
168
+ | 4 | `লাভ কৰে` | 10,608 |
169
+ | 5 | `কৰা হৈছে` | 10,201 |
170
 
171
  **3-grams (Word):**
172
 
173
  | Rank | N-gram | Count |
174
  |------|--------|-------|
175
+ | 1 | `ব্যৱহাৰ কৰা হয়` | 3,336 |
176
+ | 2 | `হ ব পাৰে` | 3,197 |
177
+ | 3 | `বুলি কোৱা হয়` | 3,190 |
178
+ | 4 | `গণ্য কৰা হয়` | 2,309 |
179
+ | 5 | `ডিগ্ৰী লাভ কৰে` | 2,043 |
180
 
181
  **4-grams (Word):**
182
 
183
  | Rank | N-gram | Count |
184
  |------|--------|-------|
185
+ | 1 | `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ` | 1,641 |
186
+ | 2 | `বুলি গণ্য কৰা হয়` | 1,265 |
187
+ | 3 | `স্নাতক ডিগ্ৰী লাভ কৰে` | 864 |
188
+ | 4 | `হিচাপে গণ্য কৰা হয়` | 801 |
189
+ | 5 | `তথ্য উৎস বাহ্যিক সংযোগ` | 782 |
190
+
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `archived from the original on` | 423 |
196
+ | 2 | `অভিনেত্ৰী চলচ্চিত্ৰৰ অভিনেত্ৰী চলচ্চিত্ৰৰ অভিনেত্ৰী` | 245 |
197
+ | 3 | `দিনটোত ঘটা কেইটামান উল্লেখযোগ্য ঘটনা` | 244 |
198
+ | 4 | `এই দিনটোত ঘটা কেইটামান উল্লেখযোগ্য` | 237 |
199
+ | 5 | `প্ৰাৰম্ভিক জীৱন আৰু শিক্ষা চনৰ` | 214 |
200
 
201
  **2-grams (Subword):**
202
 
203
  | Rank | N-gram | Count |
204
  |------|--------|-------|
205
+ | 1 | `ৰ _` | 1,309,192 |
206
+ | 2 | `ত _` | 645,783 |
207
+ | 3 | `_ আ` | 585,970 |
208
+ | 4 | `। _` | 462,800 |
209
+ | 5 | `_ ক` | 454,528 |
210
 
211
  **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `আ ৰু _` | 247,371 |
216
+ | 2 | `_ আ ৰু` | 247,194 |
217
+ | 3 | `_ ক ৰি` | 139,299 |
218
+ | 4 | `_ তে ওঁ` | 136,655 |
219
+ | 5 | `ন ৰ _` | 124,787 |
220
 
221
  **4-grams (Subword):**
222
 
223
  | Rank | N-gram | Count |
224
  |------|--------|-------|
225
+ | 1 | `_ আ ৰু _` | 246,758 |
226
+ | 2 | `ছি ল । _` | 101,454 |
227
+ | 3 | `_ ক ৰা _` | 90,139 |
228
+ | 4 | `_ _` | 64,252 |
229
+ | 5 | `_ তে ওঁ _` | 64,067 |
230
+
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `_ হ য় । _` | 58,520 |
236
+ | 2 | `_ ক ৰে । _` | 51,805 |
237
+ | 3 | `_ ক ৰি ছি ল` | 51,692 |
238
+ | 4 | `ৰ _ বা বে _` | 47,193 |
239
+ | 5 | `_ চ ন ত _` | 47,011 |
240
 
241
 
242
  ### Key Findings
243
 
244
+ - **Best Perplexity:** 2-gram (subword) with 2,308
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~14% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
259
 
260
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.8450 | 1.796 | 7.84 | 550,295 | 15.5% |
263
+ | **1** | Subword | 0.8398 | 1.790 | 12.10 | 15,252 | 16.0% |
264
+ | **2** | Word | 0.2695 | 1.205 | 1.71 | 4,311,912 | 73.1% |
265
+ | **2** | Subword | 0.7069 | 1.632 | 5.33 | 184,530 | 29.3% |
266
+ | **3** | Word | 0.0827 | 1.059 | 1.15 | 7,360,379 | 91.7% |
267
+ | **3** | Subword | 0.5599 | 1.474 | 3.49 | 984,248 | 44.0% |
268
+ | **4** | Word | 0.0276 🏆 | 1.019 | 1.04 | 8,480,563 | 97.2% |
269
+ | **4** | Subword | 0.4373 | 1.354 | 2.27 | 3,437,009 | 56.3% |
270
 
271
  ### Generated Text Samples (Word-based)
272
 
 
274
 
275
  **Context Size 1:**
276
 
277
+ 1. `আৰু লেখিকা বুলি সকলোৱে উৎসাহিত কৰাৰ উদ্দেশ্যে চনত বামুণপাৰা বালিপাৰা ষ্টীম কুকাৰতে খাদ্যৰ ৬৫ মিলিয়ন...`
278
+ 2. `কৰা এক শিক্ষা প্ৰদানৰ বিষয় হিচাপে কাৰ্যনিৰ্বাহ কৰিছিল মৃত্যু চনত হোমেন বৰগোহাঞিৰ এখন মেল পাতে আৰু`
279
+ 3. `হয় আমেৰিকা যুক্তৰাষ্টৰ প্ৰথম উপাচাৰ্য আছিল অনুমান কৰা পুৰণি অট্টালিকাবোৰত মধ্যমীয়া চৰিত্ৰত অভিনয় ...`
280
 
281
  **Context Size 2:**
282
 
283
+ 1. `কৰা হয় চনৰ জানুৱাৰী মাহত অম্বা বহোৰা নামৰ এগৰাকী যুৱতীক তেওঁৰ স্বামী টোপনি যোৱালৈকে অপেক্ষা কৰাটো প...`
284
+ 2. `কৰা হৈছিল কলহোৰা শাসকসকলৰ সমাধিস্থলত ফুল আৰু প্ৰসাদেৰে তুলসীক পূজা কৰা ধৰণৰ তাৰতম্য আছিল তথাপি ধৰ্মে...`
285
+ 3. `হ ল পদ্মভূষণ ভাৰতৰ তৃতীয় সৰ্বোচ্চ অসামৰিক সন্মান পদ্মশ্ৰী লাভ কৰে তেখেতে অভিনয় কৰে চনত তেওঁৰ নিজাক...`
286
 
287
  **Context Size 3:**
288
 
289
+ 1. `ব্যৱহাৰ কৰা হয় msa smtp প্ৰটোকলত প্ৰদান কৰা গন্তব্যস্থানৰ ঠিকনা নিৰ্ধাৰণ কৰে বাৰ্তা হেডাৰৰ পৰা নহ...`
290
+ 2. `হ ব পাৰে অসমৰ কবি লেখক জীৱন নৰহে আত্মজীৱনীমূলক গ্ৰন্থখনক নতুন প্ৰজন্মৰ সাহসৰ দলিল বুলি অভিহিত কৰে অৰ...`
291
+ 3. `বুলি কোৱা হয় ৰাক্ষসসকলক প্ৰায় পৰাধীন সৈনিকৰ ৰূপত দেখুৱা হৈছিল পিছে কিছু ৰাক্ষসে অত্যন্ত বল অৰ্জন ক...`
292
 
293
  **Context Size 4:**
294
 
295
+ 1. `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ cornell university e book library of classic texts on mechanical design an...`
296
+ 2. `বুলি গণ্য কৰা হয় আৰু কোমল আৰু কোমল স্বৰসমূহ কম্পনৰ সৈতে অন্দোলিত পৰিবেশিত হয় সকলো পাঁচটা স্বৰ`
297
+ 3. `স্নাতক ডিগ্ৰী লাভ কৰে সেই একেই দীন দয়াল উপাধ্যায় কলেজৰ পৰা সামাজিক কাম চনত ১৯ বছৰ বয়সত ছেম অল্টমে...`
298
 
299
 
300
  ### Generated Text Samples (Subword-based)
 
303
 
304
  **Context Size 1:**
305
 
306
+ 1. `_ধান_লা_শক্তি।_হাসিদ্ধ_তাকা`
307
+ 2. `ৰক্ষ_নিজনগোৱাহালচ্চিত্ৰ_মবাবে`
308
+ 3. `কথাই_ইছিল_জীৱন_ডিয়_বা`
309
 
310
  **Context Size 2:**
311
 
312
+ 1. `ৰ_আৰু_লাউ।_অসংখ্যক_ভাৰত`
313
+ 2. `ত_জ্ঞানৰ_কৃপ,_কেন্দ্ৰটোৰ_পৰা`
314
+ 3. `_আৰু_মোৰ_পৰা_উৰুলিয়ান_শা`
315
 
316
  **Context Size 3:**
317
 
318
+ 1. `আৰু_বীৰেন্দ্ৰ_মোডীৰ_নিগমৰ_প্ৰয়া`
319
+ 2. `_আৰু_অৰ্থ।_দেৱালয়খনৰ_পিছ`
320
+ 3. `_কৰিবলৈ_অস্বীকাৰ_হোৱা_মতবাদ`
321
 
322
  **Context Size 4:**
323
 
324
+ 1. `_আৰু_পাম_তেল_আৰু_পিপিপি_আৰু`
325
+ 2. `ছিল।_কুমাৰীত্ব_পৰীক্ষাৰ_অংগ_আৰু`
326
+ 3. `_কৰা_দুখৰ_আৰু_তেওঁৰ_ছিলভাৰ`
327
 
328
 
329
  ### Key Findings
330
 
331
+ - **Best Predictability:** Context-4 (word) with 97.2% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (3,437,009 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 225,407 |
350
+ | Total Tokens | 9,007,362 |
351
+ | Mean Frequency | 39.96 |
352
  | Median Frequency | 4 |
353
+ | Frequency Std Dev | 792.95 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | আৰু | 247,463 |
360
+ | 2 | কৰা | 93,923 |
361
+ | 3 | হয় | 87,716 |
362
+ | 4 | কৰে | 78,599 |
363
+ | 5 | এই | 64,931 |
364
+ | 6 | তেওঁ | 64,613 |
365
+ | 7 | পৰা | 53,636 |
366
+ | 8 | কৰিছিল | 51,623 |
367
+ | 9 | বাবে | 50,799 |
368
+ | 10 | চনত | 49,149 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
372
  | Rank | Word | Frequency |
373
  |------|------|-----------|
374
+ | 1 | পাণ্ডুবংশী | 2 |
375
+ | 2 | মনুমেণ্টছ | 2 |
376
+ | 3 | ছিৰপুৰৰ | 2 |
377
+ | 4 | swfl | 2 |
378
+ | 5 | manhunt | 2 |
379
+ | 6 | megamodel | 2 |
380
+ | 7 | গ্লেডৰেগ্‌চ | 2 |
381
+ | 8 | কিস | 2 |
382
+ | 9 | পদাইভীৰণ | 2 |
383
+ | 10 | বিগিল | 2 |
384
 
385
  ### Zipf's Law Analysis
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 1.0094 |
390
+ | R² (Goodness of Fit) | 0.989782 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
394
 
395
  | Top N Words | Coverage |
396
  |-------------|----------|
397
+ | Top 100 | 25.5% |
398
+ | Top 1,000 | 50.9% |
399
+ | Top 5,000 | 71.9% |
400
+ | Top 10,000 | 79.7% |
401
 
402
  ### Key Findings
403
 
404
+ - **Zipf Compliance:** R²=0.9898 indicates excellent adherence to Zipf's law
405
+ - **High Frequency Dominance:** Top 100 words cover 25.5% of corpus
406
+ - **Long Tail:** 215,407 words needed for remaining 20.3% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
419
 
420
  ### 5.1 Cross-Lingual Alignment
421
 
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
 
426
 
427
  ### 5.2 Model Comparison
428
 
429
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
  |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8458 | 0.3637 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.8547 🏆 | 0.2742 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.8359 | 0.2093 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8458 | 0.3735 | 0.0580 | 0.3060 |
435
+ | **aligned_64d** | 64 | 0.8547 | 0.2836 | 0.1180 | 0.3960 |
436
+ | **aligned_128d** | 128 | 0.8359 | 0.2075 | 0.1480 | 0.4820 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_64d with 0.8547 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.2853. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 14.8% R@1 in cross-lingual retrieval.
443
  - **Recommendation:** 128d aligned for best cross-lingual performance
444
 
445
  ---
446
  ## 6. Morphological Analysis (Experimental)
447
 
 
 
448
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
 
450
  ### 6.1 Productivity & Complexity
451
 
452
  | Metric | Value | Interpretation | Recommendation |
453
  |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **-0.495** | Low formulaic content | - |
456
 
457
  ### 6.2 Affix Inventory (Productive Units)
458
 
 
465
  #### Productive Suffixes
466
  | Suffix | Examples |
467
  |--------|----------|
468
+ | `-ৰ` | কেথলিকসকলৰ, স্বপ্ৰচাৰ, ৱিণ্টাৰ |
469
+ | `-াৰ` | স্বপ্ৰচাৰ, ৱিণ্টাৰ, অফকাটাৰ |
470
 
471
  ### 6.3 Bound Stems (Lexical Roots)
472
 
 
474
 
475
  | Stem | Cohesion | Substitutability | Examples |
476
  |------|----------|------------------|----------|
477
+ | `ther` | 3.36x | 64 contexts | theri, there, other |
478
+ | `ress` | 3.34x | 44 contexts | press, dress, duress |
479
+ | `nter` | 3.33x | 38 contexts | inter, enter, wynter |
480
+ | `vers` | 3.15x | 47 contexts | verso, versa, verse |
481
+ | `atio` | 3.32x | 37 contexts | ratio, fatio, nation |
482
+ | `indi` | 3.24x | 39 contexts | hindi, indie, india |
483
+ | `ment` | 3.24x | 38 contexts | cement, moment, mental |
484
+ | `stor` | 3.25x | 35 contexts | storm, jstor, story |
485
+ | `ctio` | 3.33x | 32 contexts | action, auction, faction |
486
+ | `iver` | 3.16x | 26 contexts | liver, giver, river |
487
+ | `ersi` | 3.21x | 20 contexts | persia, persie, yersin |
488
+ | `mber` | 3.17x | 18 contexts | amber, number, member |
489
 
490
  ### 6.4 Affix Compatibility (Co-occurrence)
491
 
 
500
 
501
  | Word | Suggested Split | Confidence | Stem |
502
  |------|-----------------|------------|------|
503
+ | চেটেছুয়াৰাৰ | **`চেটেছুয়-াৰ-াৰ`** | 3.0 | `চেটেছুয়` |
504
+ | সীতাৰামায়াৰ | **`সীতাৰামায়-াৰ`** | 1.5 | `সীতাৰামায়` |
505
+ | ৰাজ্কুমাৰ | **`ৰাজ্কুম-াৰ`** | 1.5 | `ৰাজ্কুম` |
506
+ | প্ৰতিৰক্ষাৰ | **`প্ৰতিৰক্ষ-াৰ`** | 1.5 | `প্ৰতিৰক্ষ` |
507
+ | দত্তবৰুৱাৰ | **`দত্তবৰুৱ-াৰ`** | 1.5 | `দত্তবৰুৱ` |
508
+ | বিষ্ণুৰাভাৰ | **`বিষ্ণুৰাভ-াৰ`** | 1.5 | `বিষ্ণুৰাভ` |
509
+ | বদৌপায়াৰ | **`বদৌপায়-াৰ`** | 1.5 | `বদৌপায়` |
510
+ | হাছলেংগাৰ | **`হাছলেংগ-াৰ`** | 1.5 | `হাছলেংগ` |
511
+ | চিজাৰিয়াৰ | **`চিজাৰিয়-াৰ`** | 1.5 | `চিজাৰিয়` |
512
+ | কুকুৰাঝাৰ | **`কুকুৰাঝ-াৰ`** | 1.5 | `কুকুৰাঝ` |
513
+ | মন্দাৱস্থাৰ | **`মন্দাৱস্থ-াৰ`** | 1.5 | `মন্দাৱস্থ` |
514
+ | আত্মপ্ৰতিষ্ঠাৰ | **`আত্মপ্ৰতিষ্ঠ-াৰ`** | 1.5 | `আত্মপ্ৰতিষ্ঠ` |
515
+ | কেঁচাগোল্লাৰ | **`কেঁচাগোল্ল-াৰ`** | 1.5 | `কেঁচাগোল্ল` |
516
+ | ফ্ৰণ্টিয়াৰ | **`ফ্ৰণ্টিয়-াৰ`** | 1.5 | `ফ্ৰণ্টিয়` |
517
+ | যিহোচূৱাৰ | **`যিহোচূৱ-াৰ`** | 1.5 | `যিহোচূৱ` |
518
 
519
  ### 6.6 Linguistic Interpretation
520
 
521
  > **Automated Insight:**
522
+ The language Assamese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
523
 
524
  ---
525
  ## 7. Summary & Recommendations
 
530
 
531
  | Component | Recommended | Rationale |
532
  |-----------|-------------|-----------|
533
+ | Tokenizer | **64k BPE** | Best compression (4.54x) |
534
+ | N-gram | **2-gram** | Lowest perplexity (2,308) |
535
+ | Markov | **Context-4** | Highest predictability (97.2%) |
536
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
537
 
538
 
 
746
  ---
747
  *Generated by Wikilangs Models Pipeline*
748
 
749
+ *Report Date: 2026-01-03 17:31:44*
models/embeddings/aligned/as_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc1d48eacb23fa09677a13e7ad69f9512aaa13f84a4ba39f7a2c85dfc093db6
3
+ size 1138420082
models/embeddings/aligned/as_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "as", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/as_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f618208c85e69b0c2f9a9c24fe14deb1d921c09cbd472e2f6ba098921d273c25
3
+ size 65664
models/embeddings/aligned/as_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "as",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 16253,
7
+ "vocab_size": 108712
8
+ }
models/embeddings/aligned/as_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c1f38d8f3adf49e702cdca3e18b1b494499f0b99c7a801d685a13d2d60561aa
3
+ size 286929266
models/embeddings/aligned/as_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "as", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/as_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61be07664c7af5be2e4ab411763491610406d567c312a6ec2b823c2c438fda38
3
+ size 4224
models/embeddings/aligned/as_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "as",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 16253,
7
+ "vocab_size": 108712
8
+ }
models/embeddings/aligned/as_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d093ab9a39e11d3235dc4002ecdf3a03777a542827c2618313dd5e688db0e50
3
+ size 570759538
models/embeddings/aligned/as_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "as", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/as_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de60160552742b93b7dc6657679da8244b4ea7923b990c0737ae1e202398069
3
+ size 16512
models/embeddings/aligned/as_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "as",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 16253,
7
+ "vocab_size": 108712
8
+ }
models/embeddings/monolingual/as_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0ac87d06ad44c5f86054b2229ad119a6da7bf6318454bddbdc55c7518d8c4fed
3
- size 1134845578
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc1d48eacb23fa09677a13e7ad69f9512aaa13f84a4ba39f7a2c85dfc093db6
3
+ size 1138420082
models/embeddings/monolingual/as_128d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
- "vocab_size": 105317
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
+ "vocab_size": 108712
15
  }
models/embeddings/monolingual/as_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4d92a65e15cacfccf9d549fee6b6a0ce808975a3c742f0ba231c9f7d4e6b2be4
3
- size 285962122
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c1f38d8f3adf49e702cdca3e18b1b494499f0b99c7a801d685a13d2d60561aa
3
+ size 286929266
models/embeddings/monolingual/as_32d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
- "vocab_size": 105317
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
+ "vocab_size": 108712
15
  }
models/embeddings/monolingual/as_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:105129e3ce95f6d925453fd6d253ba75069fd36adaf12abf53d323c8a32ee134
3
- size 568923274
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d093ab9a39e11d3235dc4002ecdf3a03777a542827c2618313dd5e688db0e50
3
+ size 570759538
models/embeddings/monolingual/as_64d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
- "vocab_size": 105317
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
+ "vocab_size": 108712
15
  }
models/subword_markov/as_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c80c8a3d77091dfe2da29d02e66a930b780f77dce7362509695133b8da1ea80
3
- size 1182447
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dad7c1b11d03f5fb8f84b46470d948c6c1b3b69562ab1dbb7d3673412b569699
3
+ size 1204126
models/subword_markov/as_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_contexts": 14852,
6
- "total_transitions": 39716105
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_contexts": 15252,
6
+ "total_transitions": 41482191
7
  }
models/subword_markov/as_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:885badaceaa6a76e70eec40f59892815b915e219ae00559881567d3b989d3ef2
3
- size 7340754
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0867ca2773731731378c0d533277909d409836d815c21b5eadca437ec98143aa
3
+ size 7509153
models/subword_markov/as_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_contexts": 180337,
6
- "total_transitions": 39696289
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_contexts": 184530,
6
+ "total_transitions": 41461482
7
  }
models/subword_markov/as_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa1ba33509e5c790fdf467b449165c1f4accd50771e716b68c45863725e8653c
3
- size 28776160
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e3d72a978bcda8b0915297039ccce0cf2fe1e7db38e3622d1e7b4acb6e63623
3
+ size 29396511
models/subword_markov/as_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_contexts": 962394,
6
- "total_transitions": 39676473
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_contexts": 984248,
6
+ "total_transitions": 41440773
7
  }
models/subword_markov/as_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f3c3fed04aa29c942baa4ca8eff754698cf97cb5a32b6ba2a80b814a80269e95
3
- size 82473540
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9d1e6df59e244ff52a2fa13ed623028f3c1801221b8785d4c9716d0f72d7505
3
+ size 84826112
models/subword_markov/as_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_contexts": 3350979,
6
- "total_transitions": 39656657
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_contexts": 3437009,
6
+ "total_transitions": 41420064
7
  }
models/subword_ngram/as_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:305bff8b4892b68a20e77689ddf5bbd66be7385e136f504ab07ed4ec09661b44
3
- size 935875
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a407b1bf32a9531bfea8247ab2474244bb4c165cad3e06d61c61a7f7476c1851
3
+ size 952234
models/subword_ngram/as_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_ngrams": 62544,
6
- "total_ngrams": 39716105
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_ngrams": 63567,
6
+ "total_ngrams": 41482191
7
  }
models/subword_ngram/as_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:67472e7d9683c3e8802771c68e0afe1ec9b79cf06fa64d62f682208c1565fa8f
3
- size 5569851
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6be9dd12a39b59d055bc880937854749c0c23decef34ce34d282a0e9ec4b4d69
3
+ size 5705561
models/subword_ngram/as_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_ngrams": 364128,
6
- "total_ngrams": 39696289
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_ngrams": 371943,
6
+ "total_ngrams": 41461482
7
  }
models/subword_ngram/as_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5c4153dc76e2de363499d7501db843a99bc9685c1f78f1712d49767c2d3edb5e
3
- size 23557608
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a783dfd64b75e5ab0c8dbd9bc2bb9251e0ee16bba614d7621274601fa3c70b11
3
+ size 24184538
models/subword_ngram/as_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "as",
5
- "unique_ngrams": 1477005,
6
- "total_ngrams": 39676473
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "as",
5
+ "unique_ngrams": 1515602,
6
+ "total_ngrams": 41440773
7
  }
models/subword_ngram/as_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43b510994c6484c187f3a060ff158e21b1d34dee25dc7d1ae061aec8ccb8e667
3
+ size 45338859
models/subword_ngram/as_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "as",
5
+ "unique_ngrams": 2664609,
6
+ "total_ngrams": 41420064
7
+ }
models/tokenizer/as_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:75647425d4994600927e38e762eb4e12bd76a7d759b998a6b27d3ef72fb92134
3
- size 629826
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3abf3b1470b91a2df59ae758d425fcc24465ae66b2371d3e9f9cabdeb3c26232
3
+ size 629337
models/tokenizer/as_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/as_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d675824377e9be300eedb755a0221aa145be09b86d891593a1c2428484b63864
3
- size 1041081
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43bc15224ea4b1ccc61b70c25f15ae6b8f19f47cc21ee1ddd0d01f33c1aba079
3
+ size 1039065
models/tokenizer/as_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/as_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b3a5aae89065887f7e21c46af47bbb046edc46cdf2b663af9a2c1ae34034851f
3
- size 1870438
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:766ec6b6148fb723d84938852ba043599e3a42929d6fa53362b707e636653d14
3
+ size 1877877
models/tokenizer/as_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/as_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd471a819995e56dd4aefb6525b4fb7cb54d7cb5e996fa7e85acdd00b8586c74
3
- size 429491
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a87b039391762a6c6ff78ebe8fd564dc70f94488d6ba3c9de287f4e128321f6
3
+ size 429632
models/tokenizer/as_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/as_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:55714b8ff99e197cb70a99feadc4f2eb8b928c63ec225a2ec5cce487f9b36d0d
3
- size 3925398
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:635e37d5ab63d938c31e94632665a224be559880e7dad16b503669e16b038cb6
3
+ size 4032114
models/vocabulary/as_vocabulary_metadata.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "language": "as",
3
- "vocabulary_size": 219027,
4
  "variant": "full",
5
  "statistics": {
6
- "type_token_ratio": 0.059760376668044714,
7
  "coverage": {
8
- "top_100": 0.2446919080599598,
9
- "top_1000": 0.48975445539765006,
10
- "top_5000": 0.6928702663989404,
11
- "top_10000": 0.7681790167555828
12
  },
13
- "hapax_count": 314664,
14
- "hapax_ratio": 0.5895995997684053,
15
- "total_documents": 19816
16
  }
17
  }
 
1
  {
2
  "language": "as",
3
+ "vocabulary_size": 225407,
4
  "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.05897458564719939,
7
  "coverage": {
8
+ "top_100": 0.24564961035969066,
9
+ "top_1000": 0.49087521062543366,
10
+ "top_5000": 0.6936500818391987,
11
+ "top_10000": 0.7687838775439132
12
  },
13
+ "hapax_count": 324963,
14
+ "hapax_ratio": 0.5904446099896433,
15
+ "total_documents": 20709
16
  }
17
  }
models/word_markov/as_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6dee794f4598493fa43d8881826c834158cd1924e7bf01f8b09883966c2c4551
3
- size 51785769
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:367f01f25fd917cfda125b68731c819ec87687b5de4c372f3c1438dab7fba73e
3
+ size 53316862
models/word_markov/as_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "as",
5
- "unique_contexts": 533621,
6
- "total_transitions": 8910700
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "as",
5
+ "unique_contexts": 550295,
6
+ "total_transitions": 9311616
7
  }
models/word_markov/as_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e48a73c55b3245526277a461699b91064b48048043751385238d1834df5c660
3
- size 152841623
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4df2480371e314f0e91998adaa2c4aaed48925dabab8264af3ab126aa903b609
3
+ size 159459542
models/word_markov/as_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "as",
5
- "unique_contexts": 4157114,
6
- "total_transitions": 8890884
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "as",
5
+ "unique_contexts": 4311912,
6
+ "total_transitions": 9290907
7
  }