Upload all models and assets for as (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +208 -173
- models/embeddings/aligned/as_128d.bin +3 -0
- models/embeddings/aligned/as_128d.meta.json +1 -0
- models/embeddings/aligned/as_128d.projection.npy +3 -0
- models/embeddings/aligned/as_128d_metadata.json +8 -0
- models/embeddings/aligned/as_32d.bin +3 -0
- models/embeddings/aligned/as_32d.meta.json +1 -0
- models/embeddings/aligned/as_32d.projection.npy +3 -0
- models/embeddings/aligned/as_32d_metadata.json +8 -0
- models/embeddings/aligned/as_64d.bin +3 -0
- models/embeddings/aligned/as_64d.meta.json +1 -0
- models/embeddings/aligned/as_64d.projection.npy +3 -0
- models/embeddings/aligned/as_64d_metadata.json +8 -0
- models/embeddings/monolingual/as_128d.bin +2 -2
- models/embeddings/monolingual/as_128d_metadata.json +1 -1
- models/embeddings/monolingual/as_32d.bin +2 -2
- models/embeddings/monolingual/as_32d_metadata.json +1 -1
- models/embeddings/monolingual/as_64d.bin +2 -2
- models/embeddings/monolingual/as_64d_metadata.json +1 -1
- models/subword_markov/as_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/as_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/as_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/as_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/as_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/as_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/as_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/as_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/as_2gram_subword.parquet +2 -2
- models/subword_ngram/as_2gram_subword_metadata.json +2 -2
- models/subword_ngram/as_3gram_subword.parquet +2 -2
- models/subword_ngram/as_3gram_subword_metadata.json +2 -2
- models/subword_ngram/as_4gram_subword.parquet +2 -2
- models/subword_ngram/as_4gram_subword_metadata.json +2 -2
- models/subword_ngram/as_5gram_subword.parquet +3 -0
- models/subword_ngram/as_5gram_subword_metadata.json +7 -0
- models/tokenizer/as_tokenizer_16k.model +2 -2
- models/tokenizer/as_tokenizer_16k.vocab +0 -0
- models/tokenizer/as_tokenizer_32k.model +2 -2
- models/tokenizer/as_tokenizer_32k.vocab +0 -0
- models/tokenizer/as_tokenizer_64k.model +2 -2
- models/tokenizer/as_tokenizer_64k.vocab +0 -0
- models/tokenizer/as_tokenizer_8k.model +2 -2
- models/tokenizer/as_tokenizer_8k.vocab +0 -0
- models/vocabulary/as_vocabulary.parquet +2 -2
- models/vocabulary/as_vocabulary_metadata.json +9 -9
- models/word_markov/as_markov_ctx1_word.parquet +2 -2
- models/word_markov/as_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/as_markov_ctx2_word.parquet +2 -2
- models/word_markov/as_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: as
|
| 3 |
-
language_name:
|
| 4 |
language_family: indoaryan_eastern
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-indoaryan_eastern
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,10 +90,10 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 3.
|
| 85 |
-
| **32k** | 4.
|
| 86 |
-
| **64k** | 4.
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
|
@@ -98,29 +108,29 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 98 |
| 32k | `▁জয়ন গৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ... (+8 more)` | 18 |
|
| 99 |
| 64k | `▁জয়নগৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ▁পৰগনা ... (+7 more)` | 17 |
|
| 100 |
|
| 101 |
-
**Sample 2:**
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
-
| 8k |
|
| 106 |
-
| 16k |
|
| 107 |
-
| 32k |
|
| 108 |
-
| 64k |
|
| 109 |
|
| 110 |
-
**Sample 3:**
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
-
| 8k |
|
| 115 |
-
| 16k |
|
| 116 |
-
| 32k |
|
| 117 |
-
| 64k |
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
-
- **Best Compression:** 64k achieves 4.
|
| 123 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 137 |
|
| 138 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
-
| **2-gram** | Word |
|
| 141 |
-
| **2-gram** | Subword | 2,
|
| 142 |
-
| **3-gram** | Word |
|
| 143 |
-
| **3-gram** | Subword |
|
| 144 |
-
| **4-gram** | Word |
|
| 145 |
-
| **4-gram** | Subword | 113,
|
|
|
|
|
|
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
|
@@ -150,68 +162,88 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 150 |
|
| 151 |
| Rank | N-gram | Count |
|
| 152 |
|------|--------|-------|
|
| 153 |
-
| 1 | `কৰা হয়` |
|
| 154 |
-
| 2 | `কৰা হৈছিল` |
|
| 155 |
-
| 3 | `হ ল` |
|
| 156 |
-
| 4 | `লাভ কৰে` | 10,
|
| 157 |
-
| 5 | `কৰা হৈছে` |
|
| 158 |
|
| 159 |
**3-grams (Word):**
|
| 160 |
|
| 161 |
| Rank | N-gram | Count |
|
| 162 |
|------|--------|-------|
|
| 163 |
-
| 1 | `ব্যৱহাৰ কৰা হয়` | 3,
|
| 164 |
-
| 2 | `হ ব পাৰে` | 3,
|
| 165 |
-
| 3 | `বুলি কোৱা হয়` |
|
| 166 |
-
| 4 | `গণ্য কৰা হয়` | 2,
|
| 167 |
-
| 5 | `ডিগ্ৰী লাভ কৰে` |
|
| 168 |
|
| 169 |
**4-grams (Word):**
|
| 170 |
|
| 171 |
| Rank | N-gram | Count |
|
| 172 |
|------|--------|-------|
|
| 173 |
-
| 1 | `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ` | 1,
|
| 174 |
-
| 2 | `বুলি গণ্য কৰা হয়` | 1,
|
| 175 |
-
| 3 | `স্নাতক ডিগ্ৰী লাভ কৰে` |
|
| 176 |
-
| 4 |
|
| 177 |
-
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
-
| 1 | `ৰ _` | 1,
|
| 184 |
-
| 2 | `ত _` |
|
| 185 |
-
| 3 | `_ আ` |
|
| 186 |
-
| 4 | `। _` |
|
| 187 |
-
| 5 | `_ ক` |
|
| 188 |
|
| 189 |
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
-
| 1 | `আ ৰু _` |
|
| 194 |
-
| 2 | `_ আ ৰু` |
|
| 195 |
-
| 3 | `_ ক ৰি` |
|
| 196 |
-
| 4 | `_ তে ওঁ` |
|
| 197 |
-
| 5 | `ন ৰ _` |
|
| 198 |
|
| 199 |
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
-
| 1 | `_ আ ৰু _` |
|
| 204 |
-
| 2 | `ছি ল । _` |
|
| 205 |
-
| 3 | `_ ক ৰা _` |
|
| 206 |
-
| 4 | `_
|
| 207 |
-
| 5 | `_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
-
- **Best Perplexity:** 2-gram (subword) with 2,
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 227 |
|
| 228 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
-
| **1** | Word | 0.
|
| 231 |
-
| **1** | Subword | 0.
|
| 232 |
-
| **2** | Word | 0.
|
| 233 |
-
| **2** | Subword | 0.
|
| 234 |
-
| **3** | Word | 0.
|
| 235 |
-
| **3** | Subword | 0.
|
| 236 |
-
| **4** | Word | 0.
|
| 237 |
-
| **4** | Subword | 0.
|
| 238 |
|
| 239 |
### Generated Text Samples (Word-based)
|
| 240 |
|
|
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
-
1. `আৰু
|
| 246 |
-
2. `কৰা
|
| 247 |
-
3. `হয়
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
-
1. `কৰা হয়
|
| 252 |
-
2. `কৰা হৈছিল
|
| 253 |
-
3. `হ ল
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
-
1. `ব্যৱহাৰ কৰা হয়
|
| 258 |
-
2. `হ ব পাৰে
|
| 259 |
-
3. `বুলি কোৱা হয়
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
-
1. `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ
|
| 264 |
-
2. `বুলি গণ্য কৰা হয়
|
| 265 |
-
3. `স্নাতক ডিগ্ৰী লাভ কৰে
|
| 266 |
|
| 267 |
|
| 268 |
### Generated Text Samples (Subword-based)
|
|
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
-
1. `_
|
| 275 |
-
2.
|
| 276 |
-
3.
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
-
1. `ৰ_
|
| 281 |
-
2. `ত_
|
| 282 |
-
3. `_আৰু_
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
-
1. `আৰু_
|
| 287 |
-
2. `_আৰু_
|
| 288 |
-
3. `_কৰিবলৈ_
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
-
1. `_আৰু_
|
| 293 |
-
2. `ছিল।_
|
| 294 |
-
3. `_কৰা_
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
-
- **Best Predictability:** Context-4 (word) with 97.
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
-
- **Memory Trade-off:** Larger contexts require more storage (3,
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
@@ -314,64 +346,64 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
-
| Vocabulary Size |
|
| 318 |
-
| Total Tokens |
|
| 319 |
-
| Mean Frequency | 39.
|
| 320 |
| Median Frequency | 4 |
|
| 321 |
-
| Frequency Std Dev |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
-
| 1 | আৰু |
|
| 328 |
-
| 2 | কৰা |
|
| 329 |
-
| 3 | হয় |
|
| 330 |
-
| 4 | কৰে |
|
| 331 |
-
| 5 | এই |
|
| 332 |
-
| 6 | তেওঁ |
|
| 333 |
-
| 7 | পৰা |
|
| 334 |
-
| 8 | কৰিছিল |
|
| 335 |
-
| 9 | বাবে |
|
| 336 |
-
| 10 | চনত |
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
-
| 1 |
|
| 343 |
-
| 2 |
|
| 344 |
-
| 3 |
|
| 345 |
-
| 4 |
|
| 346 |
-
| 5 |
|
| 347 |
-
| 6 |
|
| 348 |
-
| 7 |
|
| 349 |
-
| 8 |
|
| 350 |
-
| 9 |
|
| 351 |
-
| 10 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
-
| Zipf Coefficient | 1.
|
| 358 |
-
| R² (Goodness of Fit) | 0.
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
| 362 |
|
| 363 |
| Top N Words | Coverage |
|
| 364 |
|-------------|----------|
|
| 365 |
-
| Top 100 | 25.
|
| 366 |
-
| Top 1,000 | 50.
|
| 367 |
-
| Top 5,000 | 71.
|
| 368 |
-
| Top 10,000 | 79.
|
| 369 |
|
| 370 |
### Key Findings
|
| 371 |
|
| 372 |
-
- **Zipf Compliance:** R²=0.
|
| 373 |
-
- **High Frequency Dominance:** Top 100 words cover 25.
|
| 374 |
-
- **Long Tail:**
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 387 |
|
| 388 |
### 5.1 Cross-Lingual Alignment
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
### 5.2 Model Comparison
|
| 394 |
|
| 395 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
-
| **mono_32d** | 32 | 0.
|
| 398 |
-
| **mono_64d** | 64 | 0.
|
| 399 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
-
- **Best Isotropy:** mono_64d with 0.
|
| 404 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 405 |
-
- **Alignment Quality:**
|
| 406 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
## 6. Morphological Analysis (Experimental)
|
| 410 |
|
| 411 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
-
|
| 413 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
|
| 415 |
### 6.1 Productivity & Complexity
|
| 416 |
|
| 417 |
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
|--------|-------|----------------|----------------|
|
| 419 |
-
| Productivity Index | **
|
| 420 |
-
| Idiomaticity Gap | **-
|
| 421 |
|
| 422 |
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
|
|
@@ -430,8 +465,8 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 430 |
#### Productive Suffixes
|
| 431 |
| Suffix | Examples |
|
| 432 |
|--------|----------|
|
| 433 |
-
| `-ৰ` |
|
| 434 |
-
| `-াৰ` |
|
| 435 |
|
| 436 |
### 6.3 Bound Stems (Lexical Roots)
|
| 437 |
|
|
@@ -439,18 +474,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 439 |
|
| 440 |
| Stem | Cohesion | Substitutability | Examples |
|
| 441 |
|------|----------|------------------|----------|
|
| 442 |
-
| `ther` | 3.
|
| 443 |
-
| `
|
| 444 |
-
| `
|
| 445 |
-
| `
|
| 446 |
-
| `
|
| 447 |
-
| `
|
| 448 |
-
| `
|
| 449 |
-
| `
|
| 450 |
-
| `ctio` | 3.
|
| 451 |
-
| `
|
| 452 |
-
| `
|
| 453 |
-
| `
|
| 454 |
|
| 455 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 456 |
|
|
@@ -465,26 +500,26 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 465 |
|
| 466 |
| Word | Suggested Split | Confidence | Stem |
|
| 467 |
|------|-----------------|------------|------|
|
| 468 |
-
|
|
| 469 |
-
|
|
| 470 |
-
|
|
| 471 |
-
|
|
| 472 |
-
|
|
| 473 |
-
|
|
| 474 |
-
|
|
| 475 |
-
|
|
| 476 |
-
|
|
| 477 |
-
|
|
| 478 |
-
|
|
| 479 |
-
|
|
| 480 |
-
|
|
| 481 |
-
|
|
| 482 |
-
|
|
| 483 |
|
| 484 |
### 6.6 Linguistic Interpretation
|
| 485 |
|
| 486 |
> **Automated Insight:**
|
| 487 |
-
The language
|
| 488 |
|
| 489 |
---
|
| 490 |
## 7. Summary & Recommendations
|
|
@@ -495,9 +530,9 @@ The language AS appears to be more isolating or has a highly fixed vocabulary. W
|
|
| 495 |
|
| 496 |
| Component | Recommended | Rationale |
|
| 497 |
|-----------|-------------|-----------|
|
| 498 |
-
| Tokenizer | **64k BPE** | Best compression (4.
|
| 499 |
-
| N-gram | **2-gram** | Lowest perplexity (2,
|
| 500 |
-
| Markov | **Context-4** | Highest predictability (97.
|
| 501 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 502 |
|
| 503 |
|
|
@@ -711,4 +746,4 @@ MIT License - Free for academic and commercial use.
|
|
| 711 |
---
|
| 712 |
*Generated by Wikilangs Models Pipeline*
|
| 713 |
|
| 714 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: as
|
| 3 |
+
language_name: Assamese
|
| 4 |
language_family: indoaryan_eastern
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-indoaryan_eastern
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.542
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8547
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Assamese - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Assamese** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.450x | 3.45 | 0.0757% | 1,416,711 |
|
| 94 |
+
| **16k** | 3.894x | 3.89 | 0.0855% | 1,255,391 |
|
| 95 |
+
| **32k** | 4.266x | 4.27 | 0.0937% | 1,145,685 |
|
| 96 |
+
| **64k** | 4.542x 🏆 | 4.54 | 0.0997% | 1,076,075 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
|
|
|
| 108 |
| 32k | `▁জয়ন গৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ... (+8 more)` | 18 |
|
| 109 |
| 64k | `▁জয়নগৰ ▁মজ িল পুৰ ▁ভাৰতৰ ▁পশ্চিমবংগ ▁ৰাজ্যৰ ▁দক্ষিণ ▁চব্বিশ ▁পৰগনা ... (+7 more)` | 17 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `হাবুং মৈদাম হৈছে আহোমসকলৰ পঞ্চমৰাজধানী হাবুংৰ টাইভেটিত অৱস্থিত দুটা প্ৰাচীন মৈদা...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁হাব ু ং ▁মৈ দ াম ▁হৈছে ▁আহোম সকলৰ ▁পঞ্চম ... (+31 more)` | 41 |
|
| 116 |
+
| 16k | `▁হাব ুং ▁মৈ দাম ▁হৈছে ▁আহোম সকলৰ ▁পঞ্চম ৰাজ ধান ... (+26 more)` | 36 |
|
| 117 |
+
| 32k | `▁হাব ুং ▁মৈদাম ▁হৈছে ▁আহোমসকলৰ ▁পঞ্চম ৰাজ ধানী ▁হাব ুং ... (+21 more)` | 31 |
|
| 118 |
+
| 64k | `▁হাবুং ▁মৈদাম ▁হৈছে ▁আহোমসকলৰ ▁পঞ��চম ৰাজধানী ▁হাবুং ৰ ▁টাই ভেটিত ... (+16 more)` | 26 |
|
| 119 |
|
| 120 |
+
**Sample 3:** `ভাৰতীয় ন্যায় সংহিতা (IAST: Bhāratīya Nyāya Saṃhitā), ভাৰতীয় গণৰাজ্যৰ অপৰাধ সং...`
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁ভাৰতীয় ▁ন্যায় ▁সংহ িতা ▁( i ast : ▁bh ā ... (+27 more)` | 37 |
|
| 125 |
+
| 16k | `▁ভাৰতীয় ▁ন্যায় ▁সংহিতা ▁( i ast : ▁bh ā rat ... (+23 more)` | 33 |
|
| 126 |
+
| 32k | `▁ভাৰতীয় ▁ন্যায় ▁সংহিতা ▁( iast : ▁bh ā rat ī ... (+20 more)` | 30 |
|
| 127 |
+
| 64k | `▁ভাৰতীয় ▁ন্যায় ▁সংহিতা ▁( iast : ▁bh ā rat īya ... (+18 more)` | 28 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.542x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0757% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 147 |
|
| 148 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 62,472 | 15.93 | 206,764 | 8.3% | 21.4% |
|
| 151 |
+
| **2-gram** | Subword | 2,308 🏆 | 11.17 | 63,567 | 34.0% | 69.4% |
|
| 152 |
+
| **3-gram** | Word | 109,754 | 16.74 | 237,526 | 5.0% | 14.6% |
|
| 153 |
+
| **3-gram** | Subword | 20,939 | 14.35 | 371,943 | 13.3% | 35.5% |
|
| 154 |
+
| **4-gram** | Word | 247,178 | 17.92 | 371,701 | 2.3% | 7.7% |
|
| 155 |
+
| **4-gram** | Subword | 113,780 | 16.80 | 1,515,602 | 7.8% | 20.9% |
|
| 156 |
+
| **5-gram** | Word | 182,489 | 17.48 | 239,039 | 1.9% | 7.3% |
|
| 157 |
+
| **5-gram** | Subword | 319,720 | 18.29 | 2,664,609 | 5.1% | 14.4% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
|
|
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
+
| 1 | `কৰা হয়` | 29,188 |
|
| 166 |
+
| 2 | `কৰা হৈছিল` | 12,508 |
|
| 167 |
+
| 3 | `হ ল` | 11,276 |
|
| 168 |
+
| 4 | `লাভ কৰে` | 10,608 |
|
| 169 |
+
| 5 | `কৰা হৈছে` | 10,201 |
|
| 170 |
|
| 171 |
**3-grams (Word):**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
+
| 1 | `ব্যৱহাৰ কৰা হয়` | 3,336 |
|
| 176 |
+
| 2 | `হ ব পাৰে` | 3,197 |
|
| 177 |
+
| 3 | `বুলি কোৱা হয়` | 3,190 |
|
| 178 |
+
| 4 | `গণ্য কৰা হয়` | 2,309 |
|
| 179 |
+
| 5 | `ডিগ্ৰী লাভ কৰে` | 2,043 |
|
| 180 |
|
| 181 |
**4-grams (Word):**
|
| 182 |
|
| 183 |
| Rank | N-gram | Count |
|
| 184 |
|------|--------|-------|
|
| 185 |
+
| 1 | `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ` | 1,641 |
|
| 186 |
+
| 2 | `বুলি গণ্য কৰা হয়` | 1,265 |
|
| 187 |
+
| 3 | `স্নাতক ডিগ্ৰী লাভ কৰে` | 864 |
|
| 188 |
+
| 4 | `হিচাপে গণ্য কৰা হয়` | 801 |
|
| 189 |
+
| 5 | `তথ্য উৎস বাহ্যিক সংযোগ` | 782 |
|
| 190 |
+
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `archived from the original on` | 423 |
|
| 196 |
+
| 2 | `অভিনেত্ৰী চলচ্চিত্ৰৰ অভিনেত্ৰী চলচ্চিত্ৰৰ অভিনেত্ৰী` | 245 |
|
| 197 |
+
| 3 | `দিনটোত ঘটা কেইটামান উল্লেখযোগ্য ঘটনা` | 244 |
|
| 198 |
+
| 4 | `এই দিনটোত ঘটা কেইটামান উল্লেখযোগ্য` | 237 |
|
| 199 |
+
| 5 | `প্ৰাৰম্ভিক জীৱন আৰু শিক্ষা চনৰ` | 214 |
|
| 200 |
|
| 201 |
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `ৰ _` | 1,309,192 |
|
| 206 |
+
| 2 | `ত _` | 645,783 |
|
| 207 |
+
| 3 | `_ আ` | 585,970 |
|
| 208 |
+
| 4 | `। _` | 462,800 |
|
| 209 |
+
| 5 | `_ ক` | 454,528 |
|
| 210 |
|
| 211 |
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `আ ৰু _` | 247,371 |
|
| 216 |
+
| 2 | `_ আ ৰু` | 247,194 |
|
| 217 |
+
| 3 | `_ ক ৰি` | 139,299 |
|
| 218 |
+
| 4 | `_ তে ওঁ` | 136,655 |
|
| 219 |
+
| 5 | `ন ৰ _` | 124,787 |
|
| 220 |
|
| 221 |
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `_ আ ৰু _` | 246,758 |
|
| 226 |
+
| 2 | `ছি ল । _` | 101,454 |
|
| 227 |
+
| 3 | `_ ক ৰা _` | 90,139 |
|
| 228 |
+
| 4 | `_ এ ই _` | 64,252 |
|
| 229 |
+
| 5 | `_ তে ওঁ _` | 64,067 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ হ য় । _` | 58,520 |
|
| 236 |
+
| 2 | `_ ক ৰে । _` | 51,805 |
|
| 237 |
+
| 3 | `_ ক ৰি ছি ল` | 51,692 |
|
| 238 |
+
| 4 | `ৰ _ বা বে _` | 47,193 |
|
| 239 |
+
| 5 | `_ চ ন ত _` | 47,011 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 2,308
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~14% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 259 |
|
| 260 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.8450 | 1.796 | 7.84 | 550,295 | 15.5% |
|
| 263 |
+
| **1** | Subword | 0.8398 | 1.790 | 12.10 | 15,252 | 16.0% |
|
| 264 |
+
| **2** | Word | 0.2695 | 1.205 | 1.71 | 4,311,912 | 73.1% |
|
| 265 |
+
| **2** | Subword | 0.7069 | 1.632 | 5.33 | 184,530 | 29.3% |
|
| 266 |
+
| **3** | Word | 0.0827 | 1.059 | 1.15 | 7,360,379 | 91.7% |
|
| 267 |
+
| **3** | Subword | 0.5599 | 1.474 | 3.49 | 984,248 | 44.0% |
|
| 268 |
+
| **4** | Word | 0.0276 🏆 | 1.019 | 1.04 | 8,480,563 | 97.2% |
|
| 269 |
+
| **4** | Subword | 0.4373 | 1.354 | 2.27 | 3,437,009 | 56.3% |
|
| 270 |
|
| 271 |
### Generated Text Samples (Word-based)
|
| 272 |
|
|
|
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `আৰু লেখিকা বুলি সকলোৱে উৎসাহিত কৰাৰ উদ্দেশ্যে চনত বামুণপাৰা বালিপাৰা ষ্টীম কুকাৰতে খাদ্যৰ ৬৫ মিলিয়ন...`
|
| 278 |
+
2. `কৰা এক শিক্ষা প্ৰদানৰ বিষয় হিচাপে কাৰ্যনিৰ্বাহ কৰিছিল মৃত্যু চনত হোমেন বৰগোহাঞিৰ এখন মেল পাতে আৰু`
|
| 279 |
+
3. `হয় আমেৰিকা যুক্তৰাষ্টৰ প্ৰথম উপাচাৰ্য আছিল অনুমান কৰা পুৰণি অট্টালিকাবোৰত মধ্যমীয়া চৰিত্ৰত অভিনয় ...`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `কৰা হয় চনৰ জানুৱাৰী মাহত অম্বা বহোৰা নামৰ এগৰাকী যুৱতীক তেওঁৰ স্বামী টোপনি যোৱালৈকে অপেক্ষা কৰাটো প...`
|
| 284 |
+
2. `কৰা হৈছিল কলহোৰা শাসকসকলৰ সমাধিস্থলত ফুল আৰু প্ৰসাদেৰে তুলসীক পূজা কৰা ধৰণৰ তাৰতম্য আছিল তথাপি ধৰ্মে...`
|
| 285 |
+
3. `হ ল পদ্মভূষণ ভাৰতৰ তৃতীয় সৰ্বোচ্চ অসামৰিক সন্মান পদ্মশ্ৰী লাভ কৰে তেখেতে অভিনয় কৰে চনত তেওঁৰ নিজাক...`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `ব্যৱহাৰ কৰা হয় msa এ smtp প্ৰটোকলত প্ৰদান কৰা গন্তব্যস্থানৰ ঠিকনা নিৰ্ধাৰণ কৰে বাৰ্তা হেডাৰৰ পৰা নহ...`
|
| 290 |
+
2. `হ ব পাৰে অসমৰ কবি লেখক জীৱন নৰহে আত্মজীৱনীমূলক গ্ৰন্থখনক নতুন প্ৰজন্মৰ সাহসৰ দলিল বুলি অভিহিত কৰে অৰ...`
|
| 291 |
+
3. `বুলি কোৱা হয় ৰাক্ষসসকলক প্ৰায় পৰাধীন সৈনিকৰ ৰূপত দেখুৱা হৈছিল পিছে কিছু ৰাক্ষসে অত্যন্ত বল অৰ্জন ক...`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `তথ্য সংগ্ৰহ বাহ্যিক সংযোগ cornell university e book library of classic texts on mechanical design an...`
|
| 296 |
+
2. `বুলি গণ্য কৰা হয় আৰু কোমল গ আৰু কোমল ধ স্বৰসমূহ কম্পনৰ সৈতে অন্দোলিত পৰিবেশিত হয় সকলো পাঁচটা স্বৰ`
|
| 297 |
+
3. `স্নাতক ডিগ্ৰী লাভ কৰে সেই একেই দীন দয়াল উপাধ্যায় কলেজৰ পৰা সামাজিক কাম চনত ১৯ বছৰ বয়সত ছেম অল্টমে...`
|
| 298 |
|
| 299 |
|
| 300 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_ধান_লা_শক্তি।_হাসিদ্ধ_তাকা`
|
| 307 |
+
2. `ৰক্ষ_নিজনগোৱাহালচ্চিত্ৰ_মবাবে`
|
| 308 |
+
3. `কথাই_ইছিল_জীৱন_ডিয়_বা`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `ৰ_আৰু_লাউ।_অসংখ্যক_ভাৰত`
|
| 313 |
+
2. `ত_জ্ঞানৰ_কৃপ,_কেন্দ্ৰটোৰ_পৰা`
|
| 314 |
+
3. `_আৰু_মোৰ_পৰা_উৰুলিয়ান_শা`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `আৰু_বীৰেন্দ্ৰ_মোডীৰ_নিগমৰ_প্ৰয়া`
|
| 319 |
+
2. `_আৰু_অৰ্থ।_দেৱালয়খনৰ_পিছ`
|
| 320 |
+
3. `_কৰিবলৈ_অস্বীকাৰ_হোৱা_মতবাদ`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `_আৰু_পাম_তেল_আৰু_পিপিপি_আৰু`
|
| 325 |
+
2. `ছিল।_কুমাৰীত্ব_পৰীক্ষাৰ_অংগ_আৰু`
|
| 326 |
+
3. `_কৰা_দুখৰ_আৰু_তেওঁৰ_ছিলভাৰ`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
+
- **Best Predictability:** Context-4 (word) with 97.2% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (3,437,009 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 225,407 |
|
| 350 |
+
| Total Tokens | 9,007,362 |
|
| 351 |
+
| Mean Frequency | 39.96 |
|
| 352 |
| Median Frequency | 4 |
|
| 353 |
+
| Frequency Std Dev | 792.95 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | আৰু | 247,463 |
|
| 360 |
+
| 2 | কৰা | 93,923 |
|
| 361 |
+
| 3 | হয় | 87,716 |
|
| 362 |
+
| 4 | কৰে | 78,599 |
|
| 363 |
+
| 5 | এই | 64,931 |
|
| 364 |
+
| 6 | তেওঁ | 64,613 |
|
| 365 |
+
| 7 | পৰা | 53,636 |
|
| 366 |
+
| 8 | কৰিছিল | 51,623 |
|
| 367 |
+
| 9 | বাবে | 50,799 |
|
| 368 |
+
| 10 | চনত | 49,149 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | পাণ্ডুবংশী | 2 |
|
| 375 |
+
| 2 | মনুমেণ্টছ | 2 |
|
| 376 |
+
| 3 | ছিৰপুৰৰ | 2 |
|
| 377 |
+
| 4 | swfl | 2 |
|
| 378 |
+
| 5 | manhunt | 2 |
|
| 379 |
+
| 6 | megamodel | 2 |
|
| 380 |
+
| 7 | গ্লেডৰেগ্চ | 2 |
|
| 381 |
+
| 8 | কিস | 2 |
|
| 382 |
+
| 9 | পদাইভীৰণ | 2 |
|
| 383 |
+
| 10 | বিগিল | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 1.0094 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.989782 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
| 394 |
|
| 395 |
| Top N Words | Coverage |
|
| 396 |
|-------------|----------|
|
| 397 |
+
| Top 100 | 25.5% |
|
| 398 |
+
| Top 1,000 | 50.9% |
|
| 399 |
+
| Top 5,000 | 71.9% |
|
| 400 |
+
| Top 10,000 | 79.7% |
|
| 401 |
|
| 402 |
### Key Findings
|
| 403 |
|
| 404 |
+
- **Zipf Compliance:** R²=0.9898 indicates excellent adherence to Zipf's law
|
| 405 |
+
- **High Frequency Dominance:** Top 100 words cover 25.5% of corpus
|
| 406 |
+
- **Long Tail:** 215,407 words needed for remaining 20.3% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 419 |
|
| 420 |
### 5.1 Cross-Lingual Alignment
|
| 421 |
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
|
| 426 |
|
| 427 |
### 5.2 Model Comparison
|
| 428 |
|
| 429 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8458 | 0.3637 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8547 🏆 | 0.2742 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.8359 | 0.2093 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8458 | 0.3735 | 0.0580 | 0.3060 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8547 | 0.2836 | 0.1180 | 0.3960 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.8359 | 0.2075 | 0.1480 | 0.4820 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_64d with 0.8547 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2853. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 14.8% R@1 in cross-lingual retrieval.
|
| 443 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
## 6. Morphological Analysis (Experimental)
|
| 447 |
|
|
|
|
|
|
|
| 448 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
|
| 450 |
### 6.1 Productivity & Complexity
|
| 451 |
|
| 452 |
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **-0.495** | Low formulaic content | - |
|
| 456 |
|
| 457 |
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
|
|
|
|
| 465 |
#### Productive Suffixes
|
| 466 |
| Suffix | Examples |
|
| 467 |
|--------|----------|
|
| 468 |
+
| `-ৰ` | কেথলিকসকলৰ, স্বপ্ৰচাৰ, ৱিণ্টাৰ |
|
| 469 |
+
| `-াৰ` | স্বপ্ৰচাৰ, ৱিণ্টাৰ, অফকাটাৰ |
|
| 470 |
|
| 471 |
### 6.3 Bound Stems (Lexical Roots)
|
| 472 |
|
|
|
|
| 474 |
|
| 475 |
| Stem | Cohesion | Substitutability | Examples |
|
| 476 |
|------|----------|------------------|----------|
|
| 477 |
+
| `ther` | 3.36x | 64 contexts | theri, there, other |
|
| 478 |
+
| `ress` | 3.34x | 44 contexts | press, dress, duress |
|
| 479 |
+
| `nter` | 3.33x | 38 contexts | inter, enter, wynter |
|
| 480 |
+
| `vers` | 3.15x | 47 contexts | verso, versa, verse |
|
| 481 |
+
| `atio` | 3.32x | 37 contexts | ratio, fatio, nation |
|
| 482 |
+
| `indi` | 3.24x | 39 contexts | hindi, indie, india |
|
| 483 |
+
| `ment` | 3.24x | 38 contexts | cement, moment, mental |
|
| 484 |
+
| `stor` | 3.25x | 35 contexts | storm, jstor, story |
|
| 485 |
+
| `ctio` | 3.33x | 32 contexts | action, auction, faction |
|
| 486 |
+
| `iver` | 3.16x | 26 contexts | liver, giver, river |
|
| 487 |
+
| `ersi` | 3.21x | 20 contexts | persia, persie, yersin |
|
| 488 |
+
| `mber` | 3.17x | 18 contexts | amber, number, member |
|
| 489 |
|
| 490 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 491 |
|
|
|
|
| 500 |
|
| 501 |
| Word | Suggested Split | Confidence | Stem |
|
| 502 |
|------|-----------------|------------|------|
|
| 503 |
+
| চেটেছুয়াৰাৰ | **`চেটেছুয়-াৰ-াৰ`** | 3.0 | `চেটেছুয়` |
|
| 504 |
+
| সীতাৰামায়াৰ | **`সীতাৰামায়-াৰ`** | 1.5 | `সীতাৰামায়` |
|
| 505 |
+
| ৰাজ্কুমাৰ | **`ৰাজ্কুম-াৰ`** | 1.5 | `ৰাজ্কুম` |
|
| 506 |
+
| প্ৰতিৰক্ষাৰ | **`প্ৰতিৰক্ষ-াৰ`** | 1.5 | `প্ৰতিৰক্ষ` |
|
| 507 |
+
| দত্তবৰুৱাৰ | **`দত্তবৰুৱ-াৰ`** | 1.5 | `দত্তবৰুৱ` |
|
| 508 |
+
| বিষ্ণুৰাভাৰ | **`বিষ্ণুৰাভ-াৰ`** | 1.5 | `বিষ্ণুৰাভ` |
|
| 509 |
+
| বদৌপায়াৰ | **`বদৌপায়-াৰ`** | 1.5 | `বদৌপায়` |
|
| 510 |
+
| হাছলেংগাৰ | **`হাছলেংগ-াৰ`** | 1.5 | `হাছলেংগ` |
|
| 511 |
+
| চিজাৰিয়াৰ | **`চিজাৰিয়-াৰ`** | 1.5 | `চিজাৰিয়` |
|
| 512 |
+
| কুকুৰাঝাৰ | **`কুকুৰাঝ-াৰ`** | 1.5 | `কুকুৰাঝ` |
|
| 513 |
+
| মন্দাৱস্থাৰ | **`মন্দাৱস্থ-াৰ`** | 1.5 | `মন্দাৱস্থ` |
|
| 514 |
+
| আত্মপ্ৰতিষ্ঠাৰ | **`আত্মপ্ৰতিষ্ঠ-াৰ`** | 1.5 | `আত্মপ্ৰতিষ্ঠ` |
|
| 515 |
+
| কেঁচাগোল্লাৰ | **`কেঁচাগোল্ল-াৰ`** | 1.5 | `কেঁচাগোল্ল` |
|
| 516 |
+
| ফ্ৰণ্টিয়াৰ | **`ফ্ৰণ্টিয়-াৰ`** | 1.5 | `ফ্ৰণ্টিয়` |
|
| 517 |
+
| যিহোচূৱাৰ | **`যিহোচূৱ-াৰ`** | 1.5 | `যিহোচূৱ` |
|
| 518 |
|
| 519 |
### 6.6 Linguistic Interpretation
|
| 520 |
|
| 521 |
> **Automated Insight:**
|
| 522 |
+
The language Assamese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 523 |
|
| 524 |
---
|
| 525 |
## 7. Summary & Recommendations
|
|
|
|
| 530 |
|
| 531 |
| Component | Recommended | Rationale |
|
| 532 |
|-----------|-------------|-----------|
|
| 533 |
+
| Tokenizer | **64k BPE** | Best compression (4.54x) |
|
| 534 |
+
| N-gram | **2-gram** | Lowest perplexity (2,308) |
|
| 535 |
+
| Markov | **Context-4** | Highest predictability (97.2%) |
|
| 536 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 537 |
|
| 538 |
|
|
|
|
| 746 |
---
|
| 747 |
*Generated by Wikilangs Models Pipeline*
|
| 748 |
|
| 749 |
+
*Report Date: 2026-01-03 17:31:44*
|
models/embeddings/aligned/as_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dcc1d48eacb23fa09677a13e7ad69f9512aaa13f84a4ba39f7a2c85dfc093db6
|
| 3 |
+
size 1138420082
|
models/embeddings/aligned/as_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "as", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/as_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f618208c85e69b0c2f9a9c24fe14deb1d921c09cbd472e2f6ba098921d273c25
|
| 3 |
+
size 65664
|
models/embeddings/aligned/as_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "as",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 16253,
|
| 7 |
+
"vocab_size": 108712
|
| 8 |
+
}
|
models/embeddings/aligned/as_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c1f38d8f3adf49e702cdca3e18b1b494499f0b99c7a801d685a13d2d60561aa
|
| 3 |
+
size 286929266
|
models/embeddings/aligned/as_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "as", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/as_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61be07664c7af5be2e4ab411763491610406d567c312a6ec2b823c2c438fda38
|
| 3 |
+
size 4224
|
models/embeddings/aligned/as_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "as",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 16253,
|
| 7 |
+
"vocab_size": 108712
|
| 8 |
+
}
|
models/embeddings/aligned/as_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d093ab9a39e11d3235dc4002ecdf3a03777a542827c2618313dd5e688db0e50
|
| 3 |
+
size 570759538
|
models/embeddings/aligned/as_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "as", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/as_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8de60160552742b93b7dc6657679da8244b4ea7923b990c0737ae1e202398069
|
| 3 |
+
size 16512
|
models/embeddings/aligned/as_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "as",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 16253,
|
| 7 |
+
"vocab_size": 108712
|
| 8 |
+
}
|
models/embeddings/monolingual/as_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dcc1d48eacb23fa09677a13e7ad69f9512aaa13f84a4ba39f7a2c85dfc093db6
|
| 3 |
+
size 1138420082
|
models/embeddings/monolingual/as_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 108712
|
| 15 |
}
|
models/embeddings/monolingual/as_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c1f38d8f3adf49e702cdca3e18b1b494499f0b99c7a801d685a13d2d60561aa
|
| 3 |
+
size 286929266
|
models/embeddings/monolingual/as_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 108712
|
| 15 |
}
|
models/embeddings/monolingual/as_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d093ab9a39e11d3235dc4002ecdf3a03777a542827c2618313dd5e688db0e50
|
| 3 |
+
size 570759538
|
models/embeddings/monolingual/as_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 108712
|
| 15 |
}
|
models/subword_markov/as_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dad7c1b11d03f5fb8f84b46470d948c6c1b3b69562ab1dbb7d3673412b569699
|
| 3 |
+
size 1204126
|
models/subword_markov/as_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_contexts": 15252,
|
| 6 |
+
"total_transitions": 41482191
|
| 7 |
}
|
models/subword_markov/as_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0867ca2773731731378c0d533277909d409836d815c21b5eadca437ec98143aa
|
| 3 |
+
size 7509153
|
models/subword_markov/as_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_contexts": 184530,
|
| 6 |
+
"total_transitions": 41461482
|
| 7 |
}
|
models/subword_markov/as_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e3d72a978bcda8b0915297039ccce0cf2fe1e7db38e3622d1e7b4acb6e63623
|
| 3 |
+
size 29396511
|
models/subword_markov/as_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_contexts": 984248,
|
| 6 |
+
"total_transitions": 41440773
|
| 7 |
}
|
models/subword_markov/as_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9d1e6df59e244ff52a2fa13ed623028f3c1801221b8785d4c9716d0f72d7505
|
| 3 |
+
size 84826112
|
models/subword_markov/as_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_contexts": 3437009,
|
| 6 |
+
"total_transitions": 41420064
|
| 7 |
}
|
models/subword_ngram/as_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a407b1bf32a9531bfea8247ab2474244bb4c165cad3e06d61c61a7f7476c1851
|
| 3 |
+
size 952234
|
models/subword_ngram/as_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_ngrams": 63567,
|
| 6 |
+
"total_ngrams": 41482191
|
| 7 |
}
|
models/subword_ngram/as_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6be9dd12a39b59d055bc880937854749c0c23decef34ce34d282a0e9ec4b4d69
|
| 3 |
+
size 5705561
|
models/subword_ngram/as_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_ngrams": 371943,
|
| 6 |
+
"total_ngrams": 41461482
|
| 7 |
}
|
models/subword_ngram/as_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a783dfd64b75e5ab0c8dbd9bc2bb9251e0ee16bba614d7621274601fa3c70b11
|
| 3 |
+
size 24184538
|
models/subword_ngram/as_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_ngrams": 1515602,
|
| 6 |
+
"total_ngrams": 41440773
|
| 7 |
}
|
models/subword_ngram/as_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43b510994c6484c187f3a060ff158e21b1d34dee25dc7d1ae061aec8ccb8e667
|
| 3 |
+
size 45338859
|
models/subword_ngram/as_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "as",
|
| 5 |
+
"unique_ngrams": 2664609,
|
| 6 |
+
"total_ngrams": 41420064
|
| 7 |
+
}
|
models/tokenizer/as_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3abf3b1470b91a2df59ae758d425fcc24465ae66b2371d3e9f9cabdeb3c26232
|
| 3 |
+
size 629337
|
models/tokenizer/as_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/as_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43bc15224ea4b1ccc61b70c25f15ae6b8f19f47cc21ee1ddd0d01f33c1aba079
|
| 3 |
+
size 1039065
|
models/tokenizer/as_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/as_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:766ec6b6148fb723d84938852ba043599e3a42929d6fa53362b707e636653d14
|
| 3 |
+
size 1877877
|
models/tokenizer/as_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/as_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a87b039391762a6c6ff78ebe8fd564dc70f94488d6ba3c9de287f4e128321f6
|
| 3 |
+
size 429632
|
models/tokenizer/as_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/as_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:635e37d5ab63d938c31e94632665a224be559880e7dad16b503669e16b038cb6
|
| 3 |
+
size 4032114
|
models/vocabulary/as_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "as",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "as",
|
| 3 |
+
"vocabulary_size": 225407,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.05897458564719939,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.24564961035969066,
|
| 9 |
+
"top_1000": 0.49087521062543366,
|
| 10 |
+
"top_5000": 0.6936500818391987,
|
| 11 |
+
"top_10000": 0.7687838775439132
|
| 12 |
},
|
| 13 |
+
"hapax_count": 324963,
|
| 14 |
+
"hapax_ratio": 0.5904446099896433,
|
| 15 |
+
"total_documents": 20709
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/as_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:367f01f25fd917cfda125b68731c819ec87687b5de4c372f3c1438dab7fba73e
|
| 3 |
+
size 53316862
|
models/word_markov/as_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_contexts": 550295,
|
| 6 |
+
"total_transitions": 9311616
|
| 7 |
}
|
models/word_markov/as_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4df2480371e314f0e91998adaa2c4aaed48925dabab8264af3ab126aa903b609
|
| 3 |
+
size 159459542
|
models/word_markov/as_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "as",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "as",
|
| 5 |
+
"unique_contexts": 4311912,
|
| 6 |
+
"total_transitions": 9290907
|
| 7 |
}
|