--- language: ang language_name: Old English language_family: germanic_historical tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-germanic_historical license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 4.012 - name: best_isotropy type: isotropy value: 0.7896 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Old English - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Old English** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## 📋 Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.107x | 3.11 | 0.0859% | 252,634 | | **16k** | 3.441x | 3.45 | 0.0951% | 228,129 | | **32k** | 3.763x | 3.77 | 0.1040% | 208,636 | | **64k** | 4.012x 🏆 | 4.02 | 0.1109% | 195,650 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `Grēat Coldūn () is þorp in þæm East Þriding, se is Eoferƿicscire dǣl, on Englum....` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁grēat ▁c old ūn ▁() ▁is ▁þorp ▁in ▁þæm ▁east ... (+15 more)` | 25 | | 16k | `▁grēat ▁c old ūn ▁() ▁is ▁þorp ▁in ▁þæm ▁east ... (+15 more)` | 25 | | 32k | `▁grēat ▁cold ūn ▁() ▁is ▁þorp ▁in ▁þæm ▁east ▁þriding ... (+14 more)` | 24 | | 64k | `▁grēat ▁cold ūn ▁() ▁is ▁þorp ▁in ▁þæm ▁east ▁þriding ... (+14 more)` | 24 | **Sample 2:** `Lingua Franca Nova is gehugod sprǣc. Utweardlice bendas elefen.org gereord` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁l ing ua ▁franc a ▁nov a ▁is ▁geh ug ... (+11 more)` | 21 | | 16k | `▁l ing ua ▁franc a ▁nova ▁is ▁geh ug od ... (+10 more)` | 20 | | 32k | `▁ling ua ▁franca ▁nova ▁is ▁gehugod ▁sprǣc . ▁utweardlice ▁bendas ... (+5 more)` | 15 | | 64k | `▁lingua ▁franca ▁nova ▁is ▁gehugod ▁sprǣc . ▁utweardlice ▁bendas ▁ele ... (+4 more)` | 14 | **Sample 3:** `Andreas Iǣxcūn ƿæs se seofoða Foresittend þāra Geānlǣhtra Rīca, fram þǣm gēare ō...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `▁andreas ▁i ǣ x c ūn ▁ƿæs ▁se ▁seof oða ... (+17 more)` | 27 | | 16k | `▁andreas ▁iǣx c ūn ▁ƿæs ▁se ▁seofoða ▁foresittend ▁þāra ▁geānlǣhtra ... (+14 more)` | 24 | | 32k | `▁andreas ▁iǣx c ūn ▁ƿæs ▁se ▁seofoða ▁foresittend ▁þāra ▁geānlǣhtra ... (+14 more)` | 24 | | 64k | `▁andreas ▁iǣxcūn ▁ƿæs ▁se ▁seofoða ▁foresittend ▁þāra ▁geānlǣhtra ▁rīca , ... (+12 more)` | 22 | ### Key Findings - **Best Compression:** 64k achieves 4.012x compression - **Lowest UNK Rate:** 8k with 0.0859% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 3,551 | 11.79 | 7,095 | 21.2% | 53.1% | | **2-gram** | Subword | 365 🏆 | 8.51 | 3,006 | 61.0% | 98.1% | | **3-gram** | Word | 3,411 | 11.74 | 6,128 | 21.1% | 50.1% | | **3-gram** | Subword | 3,332 | 11.70 | 23,711 | 22.3% | 62.8% | | **4-gram** | Word | 6,747 | 12.72 | 11,452 | 16.3% | 36.7% | | **4-gram** | Subword | 18,651 | 14.19 | 105,677 | 10.6% | 32.7% | | **5-gram** | Word | 4,718 | 12.20 | 8,067 | 18.6% | 41.3% | | **5-gram** | Subword | 56,790 | 15.79 | 217,768 | 6.4% | 20.2% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `on þǣm` | 784 | | 2 | `in þǣm` | 762 | | 3 | `in þæm` | 673 | | 4 | `of the` | 645 | | 5 | `se is` | 536 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `td valign top` | 529 | | 2 | `þæs geānedan cynerīces` | 312 | | 3 | `is þorp in` | 311 | | 4 | `on eoferwicscīre þæs` | 248 | | 5 | `eoferwicscīre þæs geānedan` | 248 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `on eoferwicscīre þæs geānedan` | 248 | | 2 | `eoferwicscīre þæs geānedan cynerīces` | 248 | | 3 | `is eoferƿicscire dǣl on` | 232 | | 4 | `eoferƿicscire dǣl on englum` | 231 | | 5 | `se is eoferƿicscire dǣl` | 229 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `on eoferwicscīre þæs geānedan cynerīces` | 248 | | 2 | `is eoferƿicscire dǣl on englum` | 231 | | 3 | `se is eoferƿicscire dǣl on` | 229 | | 4 | `þriding se is eoferƿicscire dǣl` | 224 | | 5 | `east þriding se is eoferƿicscire` | 170 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `e _` | 68,542 | | 2 | `a n` | 60,904 | | 3 | `n _` | 55,318 | | 4 | `s _` | 47,837 | | 5 | `n d` | 40,759 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n d` | 24,396 | | 2 | `n d _` | 20,668 | | 3 | `a n _` | 16,952 | | 4 | `_ a n` | 16,629 | | 5 | `o n _` | 16,182 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `a n d _` | 16,673 | | 2 | `_ a n d` | 14,847 | | 3 | `_ o n _` | 10,364 | | 4 | `_ i s _` | 10,180 | | 5 | `_ i n _` | 9,895 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ a n d _` | 14,216 | | 2 | `_ t h e _` | 3,853 | | 3 | `_ þ ǣ m _` | 3,654 | | 4 | `_ þ æ s _` | 3,541 | | 5 | `_ h i s _` | 3,480 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 365 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~20% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.6200 | 1.537 | 3.57 | 86,918 | 38.0% | | **1** | Subword | 0.8434 | 1.794 | 6.43 | 1,235 | 15.7% | | **2** | Word | 0.1550 | 1.113 | 1.30 | 307,624 | 84.5% | | **2** | Subword | 0.9640 | 1.951 | 5.90 | 7,944 | 3.6% | | **3** | Word | 0.0385 | 1.027 | 1.05 | 397,324 | 96.2% | | **3** | Subword | 0.8649 | 1.821 | 4.02 | 46,823 | 13.5% | | **4** | Word | 0.0127 🏆 | 1.009 | 1.02 | 415,064 | 98.7% | | **4** | Subword | 0.6219 | 1.539 | 2.55 | 188,154 | 37.8% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `and bedældede hine in þǣm geānedum rīcum þā protest sang rocc and sīþe hrēðcyninges hām to` 2. `on francum in þæm miclum burgum and his ƿæter hit hê hê willgesweostor shes laid back` 3. `is unesco æfter déaðe drepe þrōƿade heorosƿeng heardn ond sēo hēafodmearc iesuitisces rǣses it was f...` **Context Size 2:** 1. `on þǣm fylle þǣm þe nāhwæþer ne þā ġeānedan land sculon ne ǣniġ land sceal ætfōn oþþe` 2. `in þǣm indiscum lande uttar pradesh þæt land þæt ƿæs corēan independence activist politicians and jo...` 3. `in þæm east þriding se is eoferƿicscire dǣl on englum hit hæfþ 11 351 būendas on eoferwicscīre` **Context Size 3:** 1. `td valign top ualentinianus ii td valign top td to 297 td valign top co emperor with honorius` 2. `is þorp in soria on castile and leóne in spēonlande and þorpas on sorie` 3. `eoferwicscīre þæs geānedan cynerīces and hēafodman þæs behealdenda hēapes siþðan mǣdmōnaþ he is gebē...` **Context Size 4:** 1. `on eoferwicscīre þæs geānedan cynerīces` 2. `is eoferƿicscire dǣl on englalande on eoferwicscīre þæs geānedan cynerīces` 3. `eoferƿicscire dǣl on englum mid grēatum hǣþfelda ġesċieppaþ hie þone burgsċipe of hǣþfelda on eoferw...` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_htofunes_anōre_` 2. `e_c_weaþǣfyn_sca` 3. `n_þeal_wun_berie` **Context Size 2:** 1. `e_of_fi_94oðbe_tw` 2. `an_thoseadand_īeg` 3. `n_nīƿ_mesprytt,_þ` **Context Size 3:** 1. `and_und_ofher_mā_s` 2. `nd_titutede_him._h` 3. `an_asscran_betwa_ǣ` **Context Size 4:** 1. `and_belalan_(mother` 2. `_and_ġecosta_tƿiste` 3. `_on_þā_habbað_nofgo` ### Key Findings - **Best Predictability:** Context-4 (word) with 98.7% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (188,154 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 31,186 | | Total Tokens | 403,003 | | Mean Frequency | 12.92 | | Median Frequency | 3 | | Frequency Std Dev | 156.70 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | and | 14,299 | | 2 | on | 10,683 | | 3 | is | 10,302 | | 4 | in | 10,147 | | 5 | of | 6,062 | | 6 | se | 4,316 | | 7 | the | 3,973 | | 8 | þǣm | 3,669 | | 9 | þæs | 3,610 | | 10 | his | 3,501 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | minga | 2 | | 2 | blæcfugolond | 2 | | 3 | ƿīleacstede | 2 | | 4 | cōcsċīre | 2 | | 5 | winnebagsċīre | 2 | | 6 | ælfrēdingtūn | 2 | | 7 | irfung | 2 | | 8 | larēodo | 2 | | 9 | grœndā | 2 | | 10 | dǣlungs | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 0.9344 | | R² (Goodness of Fit) | 0.998034 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 38.0% | | Top 1,000 | 59.6% | | Top 5,000 | 77.9% | | Top 10,000 | 86.2% | ### Key Findings - **Zipf Compliance:** R²=0.9980 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 38.0% of corpus - **Long Tail:** 21,186 words needed for remaining 13.8% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.7896 | 0.3585 | N/A | N/A | | **mono_64d** | 64 | 0.4746 | 0.3175 | N/A | N/A | | **mono_128d** | 128 | 0.1353 | 0.3004 | N/A | N/A | | **aligned_32d** | 32 | 0.7896 🏆 | 0.3555 | 0.0300 | 0.2480 | | **aligned_64d** | 64 | 0.4746 | 0.3090 | 0.0860 | 0.3400 | | **aligned_128d** | 128 | 0.1353 | 0.3041 | 0.1280 | 0.4020 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.7896 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.3242. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 12.8% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **1.044** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. #### Productive Prefixes | Prefix | Examples | |--------|----------| | `-ge` | geondrīcisce, gebold, gemyndgung | #### Productive Suffixes | Suffix | Examples | |--------|----------| | `-e` | ārwurðnysse, cǣġe, farende | | `-s` | celebrations, villages, annivs | | `-es` | villages, ides, missiles | | `-an` | þēodacynewīsan, hāligan, europiscan | | `-um` | dorsætum, maniȝum, elpendum | | `-de` | farende, ungeƿilde, bestandende | | `-en` | ƿriten, eċġen, hyrneġen | | `-on` | edmonton, huffington, aragon | ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. | Stem | Cohesion | Substitutability | Examples | |------|----------|------------------|----------| | `enne` | 2.04x | 48 contexts | fenne, etenne, cenneþ | | `mani` | 2.03x | 43 contexts | amani, maniȝ, maniġ | | `wear` | 1.91x | 43 contexts | wearð, wearg, weard | | `ster` | 1.67x | 59 contexts | sister, ēaster, faster | | `unge` | 1.77x | 46 contexts | tunge, tunges, jungen | | `tion` | 2.19x | 19 contexts | motion, nation, action | | `inga` | 1.72x | 34 contexts | þinga, minga, ðinga | | `ning` | 1.64x | 35 contexts | mining, cining, cyning | | `aste` | 1.69x | 27 contexts | taste, easte, ēaste | | `ynin` | 2.21x | 11 contexts | cynin, cyning, cyninȝ | | `afod` | 1.82x | 18 contexts | hēafod, heafod, ƿafode | | `nisc` | 1.49x | 27 contexts | rūnisc, denisc, dēnisc | ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. | Prefix | Suffix | Frequency | Examples | |--------|--------|-----------|----------| | `-ge` | `-e` | 79 words | geƿorhte, geƿǣre | | `-ge` | `-en` | 35 words | getimbroden, geferræden | | `-ge` | `-de` | 35 words | geanede, gehiersomode | | `-ge` | `-s` | 29 words | genus, geardas | | `-ge` | `-an` | 20 words | gegildan, gemæccan | | `-ge` | `-um` | 20 words | gerādum, germanicum | | `-ge` | `-es` | 17 words | geofones, geānlǣhtes | | `-ge` | `-on` | 9 words | gestaðoledon, gestrēon | ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). | Word | Suggested Split | Confidence | Stem | |------|-----------------|------------|------| | gehƿilcum | **`ge-hƿilc-um`** | 6.0 | `hƿilc` | | gefeahten | **`ge-feaht-en`** | 6.0 | `feaht` | | underbyrigum | **`underbyrig-um`** | 4.5 | `underbyrig` | | geþoftscipe | **`ge-þoftscipe`** | 4.5 | `þoftscipe` | | sanghordes | **`sanghord-es`** | 4.5 | `sanghord` | | gesweoster | **`ge-sweoster`** | 4.5 | `sweoster` | | russlandes | **`russland-es`** | 4.5 | `russland` | | þēodisclandes | **`þēodiscland-es`** | 4.5 | `þēodiscland` | | gestrēonum | **`ge-strē-on-um`** | 4.5 | `strē` | | drȳġelandes | **`drȳġeland-es`** | 4.5 | `drȳġeland` | | drēamhordes | **`drēamhord-es`** | 4.5 | `drēamhord` | | andweardum | **`andweard-um`** | 4.5 | `andweard` | | engliscan | **`englisc-an`** | 4.5 | `englisc` | | stǣrlican | **`stǣrlic-an`** | 4.5 | `stǣrlic` | | bedæleden | **`bedæled-en`** | 4.5 | `bedæled` | ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Old English shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **64k BPE** | Best compression (4.01x) | | N-gram | **2-gram** | Lowest perplexity (365) | | Markov | **Context-4** | Highest predictability (98.7%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) × 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R² (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - 🌐 Website: [wikilangs.org](https://wikilangs.org) - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali) - 🤝 Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 16:22:13*