SentenceTransformer based on cointegrated/LaBSE-en-ru
This is a sentence-transformers model finetuned from cointegrated/LaBSE-en-ru. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/LaBSE-en-ru
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("whitemouse84/LaBSE-en-ru-distilled-each-third-layer")
# Run inference
sentences = [
'See Name section.',
'Ms. Packard is the voice of the female blood elf in the video game World of Warcraft.',
'Yeah, people who might not be hungry.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.5305 |
| spearman_cosine | 0.6347 |
| pearson_manhattan | 0.5553 |
| spearman_manhattan | 0.6389 |
| pearson_euclidean | 0.55 |
| spearman_euclidean | 0.6347 |
| pearson_dot | 0.5305 |
| spearman_dot | 0.6347 |
| pearson_max | 0.5553 |
| spearman_max | 0.6389 |
Knowledge Distillation
- Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -0.0063 |
Semantic Similarity
- Dataset:
sts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.5043 |
| spearman_cosine | 0.5986 |
| pearson_manhattan | 0.5227 |
| spearman_manhattan | 0.5984 |
| pearson_euclidean | 0.5227 |
| spearman_euclidean | 0.5986 |
| pearson_dot | 0.5043 |
| spearman_dot | 0.5986 |
| pearson_max | 0.5227 |
| spearman_max | 0.5986 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,975,066 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 6 tokens
- mean: 26.93 tokens
- max: 139 tokens
- size: 768 elements
- Samples:
sentence label It is based on the Java Persistence API (JPA), but it does not strictly follow the JSR 338 Specification, as it implements different design patterns and technologies.[-0.012331949546933174, -0.04570527374744415, -0.024963658303022385, -0.03620213270187378, 0.022556383162736893, ...]Покупаем вторичное сырье в Каунасе (Переработка вторичного сырья) - Алфенас АНД КО, ЗАО на Bizorg.[-0.07498518377542496, -0.01913534104824066, -0.01797042042016983, 0.048263177275657654, -0.00016611881437711418, ...]At the Equal Justice Conference ( EJC ) held in March 2001 in San Diego , LSC and the Project for the Future of Equal Justice held the second Case Management Software pre-conference .[0.03870972990989685, -0.0638347640633583, -0.01696585863828659, -0.043612319976091385, -0.048241738229990005, ...] - Loss:
MSELoss
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string list details - min: 5 tokens
- mean: 24.18 tokens
- max: 111 tokens
- size: 768 elements
- Samples:
sentence label The Canadian Canoe Museum is a museum dedicated to canoes located in Peterborough, Ontario, Canada.[-0.05444105342030525, -0.03650881350040436, -0.041163671761751175, -0.010616903193295002, -0.04094529151916504, ...]И мне нравилось, что я одновременно зарабатываю и смотрю бои».[-0.03404555842280388, 0.028203096240758896, -0.056121889501810074, -0.0591997392475605, -0.05523117259144783, ...]Ну, а на следующий день, разумеется, Президент Кеннеди объявил блокаду Кубы, и наши корабли остановили у кубинских берегов направлявшийся на Кубу российский корабль, и у него на борту нашли ракеты.[-0.008193841204047203, 0.00694894278421998, -0.03027420863509178, -0.03290146216750145, 0.01425305474549532, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64learning_rate: 0.0001num_train_epochs: 1warmup_ratio: 0.1fp16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0001weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|---|
| 0 | 0 | - | - | -0.2381 | 0.4206 | - |
| 0.0058 | 1000 | 0.0014 | - | - | - | - |
| 0.0117 | 2000 | 0.0009 | - | - | - | - |
| 0.0175 | 3000 | 0.0007 | - | - | - | - |
| 0.0233 | 4000 | 0.0006 | - | - | - | - |
| 0.0292 | 5000 | 0.0005 | 0.0004 | -0.0363 | 0.6393 | - |
| 0.0350 | 6000 | 0.0004 | - | - | - | - |
| 0.0408 | 7000 | 0.0004 | - | - | - | - |
| 0.0467 | 8000 | 0.0003 | - | - | - | - |
| 0.0525 | 9000 | 0.0003 | - | - | - | - |
| 0.0583 | 10000 | 0.0003 | 0.0002 | -0.0207 | 0.6350 | - |
| 0.0641 | 11000 | 0.0003 | - | - | - | - |
| 0.0700 | 12000 | 0.0003 | - | - | - | - |
| 0.0758 | 13000 | 0.0002 | - | - | - | - |
| 0.0816 | 14000 | 0.0002 | - | - | - | - |
| 0.0875 | 15000 | 0.0002 | 0.0002 | -0.0157 | 0.6328 | - |
| 0.0933 | 16000 | 0.0002 | - | - | - | - |
| 0.0991 | 17000 | 0.0002 | - | - | - | - |
| 0.1050 | 18000 | 0.0002 | - | - | - | - |
| 0.1108 | 19000 | 0.0002 | - | - | - | - |
| 0.1166 | 20000 | 0.0002 | 0.0001 | -0.0132 | 0.6317 | - |
| 0.1225 | 21000 | 0.0002 | - | - | - | - |
| 0.1283 | 22000 | 0.0002 | - | - | - | - |
| 0.1341 | 23000 | 0.0002 | - | - | - | - |
| 0.1400 | 24000 | 0.0002 | - | - | - | - |
| 0.1458 | 25000 | 0.0002 | 0.0001 | -0.0118 | 0.6251 | - |
| 0.1516 | 26000 | 0.0002 | - | - | - | - |
| 0.1574 | 27000 | 0.0002 | - | - | - | - |
| 0.1633 | 28000 | 0.0002 | - | - | - | - |
| 0.1691 | 29000 | 0.0002 | - | - | - | - |
| 0.1749 | 30000 | 0.0002 | 0.0001 | -0.0109 | 0.6304 | - |
| 0.1808 | 31000 | 0.0002 | - | - | - | - |
| 0.1866 | 32000 | 0.0002 | - | - | - | - |
| 0.1924 | 33000 | 0.0002 | - | - | - | - |
| 0.1983 | 34000 | 0.0001 | - | - | - | - |
| 0.2041 | 35000 | 0.0001 | 0.0001 | -0.0102 | 0.6280 | - |
| 0.2099 | 36000 | 0.0001 | - | - | - | - |
| 0.2158 | 37000 | 0.0001 | - | - | - | - |
| 0.2216 | 38000 | 0.0001 | - | - | - | - |
| 0.2274 | 39000 | 0.0001 | - | - | - | - |
| 0.2333 | 40000 | 0.0001 | 0.0001 | -0.0098 | 0.6272 | - |
| 0.2391 | 41000 | 0.0001 | - | - | - | - |
| 0.2449 | 42000 | 0.0001 | - | - | - | - |
| 0.2507 | 43000 | 0.0001 | - | - | - | - |
| 0.2566 | 44000 | 0.0001 | - | - | - | - |
| 0.2624 | 45000 | 0.0001 | 0.0001 | -0.0093 | 0.6378 | - |
| 0.2682 | 46000 | 0.0001 | - | - | - | - |
| 0.2741 | 47000 | 0.0001 | - | - | - | - |
| 0.2799 | 48000 | 0.0001 | - | - | - | - |
| 0.2857 | 49000 | 0.0001 | - | - | - | - |
| 0.2916 | 50000 | 0.0001 | 0.0001 | -0.0089 | 0.6325 | - |
| 0.2974 | 51000 | 0.0001 | - | - | - | - |
| 0.3032 | 52000 | 0.0001 | - | - | - | - |
| 0.3091 | 53000 | 0.0001 | - | - | - | - |
| 0.3149 | 54000 | 0.0001 | - | - | - | - |
| 0.3207 | 55000 | 0.0001 | 0.0001 | -0.0087 | 0.6328 | - |
| 0.3266 | 56000 | 0.0001 | - | - | - | - |
| 0.3324 | 57000 | 0.0001 | - | - | - | - |
| 0.3382 | 58000 | 0.0001 | - | - | - | - |
| 0.3441 | 59000 | 0.0001 | - | - | - | - |
| 0.3499 | 60000 | 0.0001 | 0.0001 | -0.0085 | 0.6357 | - |
| 0.3557 | 61000 | 0.0001 | - | - | - | - |
| 0.3615 | 62000 | 0.0001 | - | - | - | - |
| 0.3674 | 63000 | 0.0001 | - | - | - | - |
| 0.3732 | 64000 | 0.0001 | - | - | - | - |
| 0.3790 | 65000 | 0.0001 | 0.0001 | -0.0083 | 0.6366 | - |
| 0.3849 | 66000 | 0.0001 | - | - | - | - |
| 0.3907 | 67000 | 0.0001 | - | - | - | - |
| 0.3965 | 68000 | 0.0001 | - | - | - | - |
| 0.4024 | 69000 | 0.0001 | - | - | - | - |
| 0.4082 | 70000 | 0.0001 | 0.0001 | -0.0080 | 0.6325 | - |
| 0.4140 | 71000 | 0.0001 | - | - | - | - |
| 0.4199 | 72000 | 0.0001 | - | - | - | - |
| 0.4257 | 73000 | 0.0001 | - | - | - | - |
| 0.4315 | 74000 | 0.0001 | - | - | - | - |
| 0.4374 | 75000 | 0.0001 | 0.0001 | -0.0078 | 0.6351 | - |
| 0.4432 | 76000 | 0.0001 | - | - | - | - |
| 0.4490 | 77000 | 0.0001 | - | - | - | - |
| 0.4548 | 78000 | 0.0001 | - | - | - | - |
| 0.4607 | 79000 | 0.0001 | - | - | - | - |
| 0.4665 | 80000 | 0.0001 | 0.0001 | -0.0077 | 0.6323 | - |
| 0.4723 | 81000 | 0.0001 | - | - | - | - |
| 0.4782 | 82000 | 0.0001 | - | - | - | - |
| 0.4840 | 83000 | 0.0001 | - | - | - | - |
| 0.4898 | 84000 | 0.0001 | - | - | - | - |
| 0.4957 | 85000 | 0.0001 | 0.0001 | -0.0076 | 0.6316 | - |
| 0.5015 | 86000 | 0.0001 | - | - | - | - |
| 0.5073 | 87000 | 0.0001 | - | - | - | - |
| 0.5132 | 88000 | 0.0001 | - | - | - | - |
| 0.5190 | 89000 | 0.0001 | - | - | - | - |
| 0.5248 | 90000 | 0.0001 | 0.0001 | -0.0074 | 0.6306 | - |
| 0.5307 | 91000 | 0.0001 | - | - | - | - |
| 0.5365 | 92000 | 0.0001 | - | - | - | - |
| 0.5423 | 93000 | 0.0001 | - | - | - | - |
| 0.5481 | 94000 | 0.0001 | - | - | - | - |
| 0.5540 | 95000 | 0.0001 | 0.0001 | -0.0073 | 0.6305 | - |
| 0.5598 | 96000 | 0.0001 | - | - | - | - |
| 0.5656 | 97000 | 0.0001 | - | - | - | - |
| 0.5715 | 98000 | 0.0001 | - | - | - | - |
| 0.5773 | 99000 | 0.0001 | - | - | - | - |
| 0.5831 | 100000 | 0.0001 | 0.0001 | -0.0072 | 0.6333 | - |
| 0.5890 | 101000 | 0.0001 | - | - | - | - |
| 0.5948 | 102000 | 0.0001 | - | - | - | - |
| 0.6006 | 103000 | 0.0001 | - | - | - | - |
| 0.6065 | 104000 | 0.0001 | - | - | - | - |
| 0.6123 | 105000 | 0.0001 | 0.0001 | -0.0071 | 0.6351 | - |
| 0.6181 | 106000 | 0.0001 | - | - | - | - |
| 0.6240 | 107000 | 0.0001 | - | - | - | - |
| 0.6298 | 108000 | 0.0001 | - | - | - | - |
| 0.6356 | 109000 | 0.0001 | - | - | - | - |
| 0.6415 | 110000 | 0.0001 | 0.0001 | -0.0070 | 0.6330 | - |
| 0.6473 | 111000 | 0.0001 | - | - | - | - |
| 0.6531 | 112000 | 0.0001 | - | - | - | - |
| 0.6589 | 113000 | 0.0001 | - | - | - | - |
| 0.6648 | 114000 | 0.0001 | - | - | - | - |
| 0.6706 | 115000 | 0.0001 | 0.0001 | -0.0070 | 0.6336 | - |
| 0.6764 | 116000 | 0.0001 | - | - | - | - |
| 0.6823 | 117000 | 0.0001 | - | - | - | - |
| 0.6881 | 118000 | 0.0001 | - | - | - | - |
| 0.6939 | 119000 | 0.0001 | - | - | - | - |
| 0.6998 | 120000 | 0.0001 | 0.0001 | -0.0069 | 0.6305 | - |
| 0.7056 | 121000 | 0.0001 | - | - | - | - |
| 0.7114 | 122000 | 0.0001 | - | - | - | - |
| 0.7173 | 123000 | 0.0001 | - | - | - | - |
| 0.7231 | 124000 | 0.0001 | - | - | - | - |
| 0.7289 | 125000 | 0.0001 | 0.0001 | -0.0068 | 0.6362 | - |
| 0.7348 | 126000 | 0.0001 | - | - | - | - |
| 0.7406 | 127000 | 0.0001 | - | - | - | - |
| 0.7464 | 128000 | 0.0001 | - | - | - | - |
| 0.7522 | 129000 | 0.0001 | - | - | - | - |
| 0.7581 | 130000 | 0.0001 | 0.0001 | -0.0067 | 0.6340 | - |
| 0.7639 | 131000 | 0.0001 | - | - | - | - |
| 0.7697 | 132000 | 0.0001 | - | - | - | - |
| 0.7756 | 133000 | 0.0001 | - | - | - | - |
| 0.7814 | 134000 | 0.0001 | - | - | - | - |
| 0.7872 | 135000 | 0.0001 | 0.0001 | -0.0067 | 0.6365 | - |
| 0.7931 | 136000 | 0.0001 | - | - | - | - |
| 0.7989 | 137000 | 0.0001 | - | - | - | - |
| 0.8047 | 138000 | 0.0001 | - | - | - | - |
| 0.8106 | 139000 | 0.0001 | - | - | - | - |
| 0.8164 | 140000 | 0.0001 | 0.0001 | -0.0066 | 0.6339 | - |
| 0.8222 | 141000 | 0.0001 | - | - | - | - |
| 0.8281 | 142000 | 0.0001 | - | - | - | - |
| 0.8339 | 143000 | 0.0001 | - | - | - | - |
| 0.8397 | 144000 | 0.0001 | - | - | - | - |
| 0.8456 | 145000 | 0.0001 | 0.0001 | -0.0066 | 0.6352 | - |
| 0.8514 | 146000 | 0.0001 | - | - | - | - |
| 0.8572 | 147000 | 0.0001 | - | - | - | - |
| 0.8630 | 148000 | 0.0001 | - | - | - | - |
| 0.8689 | 149000 | 0.0001 | - | - | - | - |
| 0.8747 | 150000 | 0.0001 | 0.0001 | -0.0065 | 0.6357 | - |
| 0.8805 | 151000 | 0.0001 | - | - | - | - |
| 0.8864 | 152000 | 0.0001 | - | - | - | - |
| 0.8922 | 153000 | 0.0001 | - | - | - | - |
| 0.8980 | 154000 | 0.0001 | - | - | - | - |
| 0.9039 | 155000 | 0.0001 | 0.0001 | -0.0065 | 0.6336 | - |
| 0.9097 | 156000 | 0.0001 | - | - | - | - |
| 0.9155 | 157000 | 0.0001 | - | - | - | - |
| 0.9214 | 158000 | 0.0001 | - | - | - | - |
| 0.9272 | 159000 | 0.0001 | - | - | - | - |
| 0.9330 | 160000 | 0.0001 | 0.0001 | -0.0064 | 0.6334 | - |
| 0.9389 | 161000 | 0.0001 | - | - | - | - |
| 0.9447 | 162000 | 0.0001 | - | - | - | - |
| 0.9505 | 163000 | 0.0001 | - | - | - | - |
| 0.9563 | 164000 | 0.0001 | - | - | - | - |
| 0.9622 | 165000 | 0.0001 | 0.0001 | -0.0064 | 0.6337 | - |
| 0.9680 | 166000 | 0.0001 | - | - | - | - |
| 0.9738 | 167000 | 0.0001 | - | - | - | - |
| 0.9797 | 168000 | 0.0001 | - | - | - | - |
| 0.9855 | 169000 | 0.0001 | - | - | - | - |
| 0.9913 | 170000 | 0.0001 | 0.0001 | -0.0063 | 0.6347 | - |
| 0.9972 | 171000 | 0.0001 | - | - | - | - |
| 1.0 | 171486 | - | - | - | - | 0.5986 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 3
Model tree for whitemouse84/LaBSE-en-ru-distilled-each-third-layer
Base model
cointegrated/LaBSE-en-ruEvaluation results
- Pearson Cosine on sts devself-reported0.531
- Spearman Cosine on sts devself-reported0.635
- Pearson Manhattan on sts devself-reported0.555
- Spearman Manhattan on sts devself-reported0.639
- Pearson Euclidean on sts devself-reported0.550
- Spearman Euclidean on sts devself-reported0.635
- Pearson Dot on sts devself-reported0.531
- Spearman Dot on sts devself-reported0.635
- Pearson Max on sts devself-reported0.555
- Spearman Max on sts devself-reported0.639