metadata
license: mit
Compressed LLM Model Zone
The models are prepared by Visual Informatics Group @ University of Texas at Austin (VITA-group).
License: MIT License
Setup environment
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install transformers==4.31.0
pip install huggingface_hub accelerate
How to use
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_degree = 0.1
comp_method = 'sparsegpt_unstructured'
model_path = f'vita-group/comp-{arch}_{comp_method}_s{comp_degree}'
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids
outputs = model.generate(input_ids)
| Base Model | Model Size | Compression Method | Compression Degree | |
|---|---|---|---|---|
| 0 | Llama-2 | 7b | magnitude_unstructured | s0.1 |
| 1 | Llama-2 | 7b | magnitude_unstructured | s0.2 |
| 2 | Llama-2 | 7b | magnitude_unstructured | s0.3 |
| 3 | Llama-2 | 7b | magnitude_unstructured | s0.5 |
| 4 | Llama-2 | 7b | magnitude_unstructured | s0.6 |
| 5 | Llama-2 | 7b | sparsegpt_unstructured | s0.1 |
| 6 | Llama-2 | 7b | sparsegpt_unstructured | s0.2 |
| 7 | Llama-2 | 7b | sparsegpt_unstructured | s0.3 |
| 8 | Llama-2 | 7b | sparsegpt_unstructured | s0.5 |
| 9 | Llama-2 | 7b | sparsegpt_unstructured | s0.6 |
| 10 | Llama-2 | 7b | wanda_unstructured | s0.1 |
| 11 | Llama-2 | 7b | wanda_unstructured | s0.2 |
| 12 | Llama-2 | 7b | wanda_unstructured | s0.3 |
| 13 | Llama-2 | 7b | wanda_unstructured | s0.5 |
| 14 | Llama-2 | 7b | wanda_unstructured | s0.6 |