Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama2
|
| 3 |
+
datasets:
|
| 4 |
+
- umd-zhou-lab/recycled_alpaca_v1
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
---
|
| 8 |
+
# Model Card for umd-zhou-lab/recycled-alpaca-7b-v1.0
|
| 9 |
+
|
| 10 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 11 |
+
|
| 12 |
+
This model is trained by fine-tuning llama-2 with recycled alpaca data V1.
|
| 13 |
+
|
| 14 |
+
## Model Details
|
| 15 |
+
|
| 16 |
+
### Model Description
|
| 17 |
+
|
| 18 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
- **Developed by:** UMD Tianyi Zhou Lab
|
| 22 |
+
- **Model type:** An auto-regressive language model based on the transformer architecture
|
| 23 |
+
- **License:** Llama 2 Community License Agreement
|
| 24 |
+
- **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)
|
| 25 |
+
|
| 26 |
+
### Model Sources
|
| 27 |
+
|
| 28 |
+
<!-- Provide the basic links for the model. -->
|
| 29 |
+
|
| 30 |
+
- **GitHub:** [Reflection-Tuning](https://github.com/tianyi-lab/Reflection_Tuning)
|
| 31 |
+
- **Paper:** [Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning](https://arxiv.org/abs/2310.11716)
|
| 32 |
+
- **Data:** [recycled_alpaca_v1](https://huggingface.co/datasets/umd-zhou-lab/recycled_alpaca_v1)
|
| 33 |
+
|
| 34 |
+
## Uses
|
| 35 |
+
|
| 36 |
+
The primary use of this model is research on large language models and chatbots.
|
| 37 |
+
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
|
| 38 |
+
|
| 39 |
+
## Training
|
| 40 |
+
|
| 41 |
+
We use the prompt from [FastChat](https://github.com/lm-sys/FastChat):
|
| 42 |
+
|
| 43 |
+
```
|
| 44 |
+
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>......
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate |
|
| 48 |
+
| --- | ---: | ---: | ---: | ---: | ---: | ---: |
|
| 49 |
+
| Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 |
|
| 50 |
+
|
| 51 |
+
## Performance
|
| 52 |
+
|
| 53 |
+
The following table provides a comparison between our recycled models (V1) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard. <br>
|
| 54 |
+
|
| 55 |
+
The Recycled Alpaca Data can be found here: [[hf-Link]](https://huggingface.co/datasets/umd-zhou-lab/recycled_alpaca_v1) <br>
|
| 56 |
+
The Recycled WizardLM (70k) Data can be found here: [[hf-Link]](https://huggingface.co/datasets/umd-zhou-lab/recycled_wiz70_v1) <br>
|
| 57 |
+
|
| 58 |
+
| | **AlpacaEval** || **Avg** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** || **Model**|
|
| 59 |
+
|--------------------------|:--------------:|:-:|:-----------:|:-------:|:-------------:|:-------:|:--------------:|:-:|:-:|
|
| 60 |
+
| **Alpaca 7B** | 26.46 || 50.21 | 42.65 | 76.91 | 41.73 | 39.55 ||/|
|
| 61 |
+
| **Recycled Alpaca 7B V1.0** | 76.99 || 56.18| 53.92 | 77.68 | 47.55 | 45.55 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-alpaca-7b-v1.0)|
|
| 62 |
+
| **Recycled Alpaca 13B V1.0** | 83.42 || 58.93| 58.70 | 80.80 | 53.11 | 43.12 ||[Link]|
|
| 63 |
+
|||||||||||
|
| 64 |
+
| **WizardLM 7B** | 67.64 || 54.18 | 51.60 | 77.70 | 42.70 | 44.70 ||/|
|
| 65 |
+
| **Recycled WizardLM 7B V1.0** | 78.88 || 56.21 | 53.92 | 77.05 | 48.35 | 45.52 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-wizardlm-7b-v1.0)|
|
| 66 |
+
|||||||||
|
| 67 |
+
|
| 68 |
+
## Citation
|
| 69 |
+
|
| 70 |
+
Please consider citing our paper if you think our codes, data, or models are useful. Thank you!
|
| 71 |
+
```
|
| 72 |
+
@misc{li2023reflectiontuning,
|
| 73 |
+
title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning},
|
| 74 |
+
author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou},
|
| 75 |
+
year={2023},
|
| 76 |
+
eprint={2310.11716},
|
| 77 |
+
archivePrefix={arXiv},
|
| 78 |
+
primaryClass={cs.CL}
|
| 79 |
+
}
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|