--- language: multilingual tags: - adaptive-classifier - text-classification - continuous-learning license: apache-2.0 --- # Adaptive Classifier This model is an instance of an [adaptive-classifier](https://github.com/codelion/adaptive-classifier) that allows for continuous learning and dynamic class addition. ## Installation **IMPORTANT:** To use this model, you must first install the `adaptive-classifier` library. You do **NOT** need `trust_remote_code=True`. ```bash pip install adaptive-classifier ``` ## Model Details - Base Model: distilbert/distilbert-base-cased - Number of Classes: 39 - Total Examples: 3961 - Embedding Dimension: 768 ## Class Distribution ``` administrativnie_pravo: 31 examples (0.8%) avtovlasnykam: 151 examples (3.8%) bankivska_diialnist: 101 examples (2.5%) dierzhavni_zakupivli: 2 examples (0.1%) doghovirni_vidnosini: 41 examples (1.0%) dovircha_vlastnist: 7 examples (0.2%) ekologiya: 3 examples (0.1%) gospodarskie_pravo: 38 examples (1.0%) gromadianski_pravovidnosini: 32 examples (0.8%) immighratsiia_iemighratsiia: 107 examples (2.7%) inshe: 858 examples (21.7%) intieliektualna_vlasnist: 22 examples (0.6%) investitsii: 5 examples (0.1%) korporativnie_pravo: 12 examples (0.3%) kriminalnie_pravo: 81 examples (2.0%) litsienzuvannia: 9 examples (0.2%) medicina: 67 examples (1.7%) mizhnarodni_pravovidnosini: 12 examples (0.3%) mytne_pravo: 3 examples (0.1%) nierukhomist: 97 examples (2.4%) notarialni_pytanniia: 19 examples (0.5%) opodatkuvannia: 131 examples (3.3%) pidpriemnicka_dialnist: 43 examples (1.1%) piensiiata_sotsialni_viplati: 154 examples (3.9%) pratsevlashtuvvannya: 181 examples (4.6%) prava_spozhivachiv: 30 examples (0.8%) prava_vnutrishno_pieriemishchienikh_osib: 111 examples (2.8%) reklama: 2 examples (0.1%) reyestraciya_likvidaciya_bankrutstvo: 78 examples (2.0%) simejne_pravo: 288 examples (7.3%) sotsialnyj_zakhist: 172 examples (4.3%) spadkove_pravo: 80 examples (2.0%) strakhuvannya: 2 examples (0.1%) sudova_praktika: 154 examples (3.9%) tsivilne_pravo: 117 examples (3.0%) vighotovliennia_produktsiyi_ta_nadannia_poslugh: 4 examples (0.1%) viiskovie_pravo: 594 examples (15.0%) zhitlovi_pravovidnosini: 58 examples (1.5%) ziemielnie_pravo: 64 examples (1.6%) ``` ## Usage After installing the `adaptive-classifier` library, you can load and use this model: ```python from adaptive_classifier import AdaptiveClassifier # Load the model (no trust_remote_code needed!) classifier = AdaptiveClassifier.from_pretrained("adaptive-classifier/model-name") # Make predictions text = "Your text here" predictions = classifier.predict(text) print(predictions) # List of (label, confidence) tuples # Add new examples for continuous learning texts = ["Example 1", "Example 2"] labels = ["class1", "class2"] classifier.add_examples(texts, labels) ``` **Note:** This model uses the `adaptive-classifier` library distributed via PyPI. You do **NOT** need to set `trust_remote_code=True` - just install the library first. ## Training Details - Training Steps: 1 - Examples per Class: See distribution above - Prototype Memory: Active - Neural Adaptation: Active ## Limitations This model: - Requires at least 3 examples per class - Has a maximum of 1000 examples per class - Updates prototypes every 10 examples ## Citation ```bibtex @software{adaptive_classifier, title = {Adaptive Classifier: Dynamic Text Classification with Continuous Learning}, author = {Sharma, Asankhaya}, year = {2025}, publisher = {GitHub}, url = {https://github.com/codelion/adaptive-classifier} } ```