Upload model with adaptive-classifier
Browse files- README.md +120 -0
- config.json +160 -0
- examples.json +0 -0
- model.safetensors +3 -0
- onnx/config.json +23 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- onnx/ort_config.json +33 -0
- onnx/special_tokens_map.json +37 -0
- onnx/tokenizer.json +0 -0
- onnx/tokenizer_config.json +56 -0
- onnx/vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: multilingual
|
| 3 |
+
tags:
|
| 4 |
+
- adaptive-classifier
|
| 5 |
+
- text-classification
|
| 6 |
+
- continuous-learning
|
| 7 |
+
license: apache-2.0
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# Adaptive Classifier
|
| 11 |
+
|
| 12 |
+
This model is an instance of an [adaptive-classifier](https://github.com/codelion/adaptive-classifier) that allows for continuous learning and dynamic class addition.
|
| 13 |
+
|
| 14 |
+
## Installation
|
| 15 |
+
|
| 16 |
+
**IMPORTANT:** To use this model, you must first install the `adaptive-classifier` library. You do **NOT** need `trust_remote_code=True`.
|
| 17 |
+
|
| 18 |
+
```bash
|
| 19 |
+
pip install adaptive-classifier
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
## Model Details
|
| 23 |
+
|
| 24 |
+
- Base Model: distilbert/distilbert-base-cased
|
| 25 |
+
- Number of Classes: 39
|
| 26 |
+
- Total Examples: 3961
|
| 27 |
+
- Embedding Dimension: 768
|
| 28 |
+
|
| 29 |
+
## Class Distribution
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
administrativnie_pravo: 31 examples (0.8%)
|
| 33 |
+
avtovlasnykam: 151 examples (3.8%)
|
| 34 |
+
bankivska_diialnist: 101 examples (2.5%)
|
| 35 |
+
dierzhavni_zakupivli: 2 examples (0.1%)
|
| 36 |
+
doghovirni_vidnosini: 41 examples (1.0%)
|
| 37 |
+
dovircha_vlastnist: 7 examples (0.2%)
|
| 38 |
+
ekologiya: 3 examples (0.1%)
|
| 39 |
+
gospodarskie_pravo: 38 examples (1.0%)
|
| 40 |
+
gromadianski_pravovidnosini: 32 examples (0.8%)
|
| 41 |
+
immighratsiia_iemighratsiia: 107 examples (2.7%)
|
| 42 |
+
inshe: 858 examples (21.7%)
|
| 43 |
+
intieliektualna_vlasnist: 22 examples (0.6%)
|
| 44 |
+
investitsii: 5 examples (0.1%)
|
| 45 |
+
korporativnie_pravo: 12 examples (0.3%)
|
| 46 |
+
kriminalnie_pravo: 81 examples (2.0%)
|
| 47 |
+
litsienzuvannia: 9 examples (0.2%)
|
| 48 |
+
medicina: 67 examples (1.7%)
|
| 49 |
+
mizhnarodni_pravovidnosini: 12 examples (0.3%)
|
| 50 |
+
mytne_pravo: 3 examples (0.1%)
|
| 51 |
+
nierukhomist: 97 examples (2.4%)
|
| 52 |
+
notarialni_pytanniia: 19 examples (0.5%)
|
| 53 |
+
opodatkuvannia: 131 examples (3.3%)
|
| 54 |
+
pidpriemnicka_dialnist: 43 examples (1.1%)
|
| 55 |
+
piensiiata_sotsialni_viplati: 154 examples (3.9%)
|
| 56 |
+
pratsevlashtuvvannya: 181 examples (4.6%)
|
| 57 |
+
prava_spozhivachiv: 30 examples (0.8%)
|
| 58 |
+
prava_vnutrishno_pieriemishchienikh_osib: 111 examples (2.8%)
|
| 59 |
+
reklama: 2 examples (0.1%)
|
| 60 |
+
reyestraciya_likvidaciya_bankrutstvo: 78 examples (2.0%)
|
| 61 |
+
simejne_pravo: 288 examples (7.3%)
|
| 62 |
+
sotsialnyj_zakhist: 172 examples (4.3%)
|
| 63 |
+
spadkove_pravo: 80 examples (2.0%)
|
| 64 |
+
strakhuvannya: 2 examples (0.1%)
|
| 65 |
+
sudova_praktika: 154 examples (3.9%)
|
| 66 |
+
tsivilne_pravo: 117 examples (3.0%)
|
| 67 |
+
vighotovliennia_produktsiyi_ta_nadannia_poslugh: 4 examples (0.1%)
|
| 68 |
+
viiskovie_pravo: 594 examples (15.0%)
|
| 69 |
+
zhitlovi_pravovidnosini: 58 examples (1.5%)
|
| 70 |
+
ziemielnie_pravo: 64 examples (1.6%)
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## Usage
|
| 74 |
+
|
| 75 |
+
After installing the `adaptive-classifier` library, you can load and use this model:
|
| 76 |
+
|
| 77 |
+
```python
|
| 78 |
+
from adaptive_classifier import AdaptiveClassifier
|
| 79 |
+
|
| 80 |
+
# Load the model (no trust_remote_code needed!)
|
| 81 |
+
classifier = AdaptiveClassifier.from_pretrained("adaptive-classifier/model-name")
|
| 82 |
+
|
| 83 |
+
# Make predictions
|
| 84 |
+
text = "Your text here"
|
| 85 |
+
predictions = classifier.predict(text)
|
| 86 |
+
print(predictions) # List of (label, confidence) tuples
|
| 87 |
+
|
| 88 |
+
# Add new examples for continuous learning
|
| 89 |
+
texts = ["Example 1", "Example 2"]
|
| 90 |
+
labels = ["class1", "class2"]
|
| 91 |
+
classifier.add_examples(texts, labels)
|
| 92 |
+
```
|
| 93 |
+
|
| 94 |
+
**Note:** This model uses the `adaptive-classifier` library distributed via PyPI. You do **NOT** need to set `trust_remote_code=True` - just install the library first.
|
| 95 |
+
|
| 96 |
+
## Training Details
|
| 97 |
+
|
| 98 |
+
- Training Steps: 1
|
| 99 |
+
- Examples per Class: See distribution above
|
| 100 |
+
- Prototype Memory: Active
|
| 101 |
+
- Neural Adaptation: Active
|
| 102 |
+
|
| 103 |
+
## Limitations
|
| 104 |
+
|
| 105 |
+
This model:
|
| 106 |
+
- Requires at least 3 examples per class
|
| 107 |
+
- Has a maximum of 1000 examples per class
|
| 108 |
+
- Updates prototypes every 10 examples
|
| 109 |
+
|
| 110 |
+
## Citation
|
| 111 |
+
|
| 112 |
+
```bibtex
|
| 113 |
+
@software{adaptive_classifier,
|
| 114 |
+
title = {Adaptive Classifier: Dynamic Text Classification with Continuous Learning},
|
| 115 |
+
author = {Sharma, Asankhaya},
|
| 116 |
+
year = {2025},
|
| 117 |
+
publisher = {GitHub},
|
| 118 |
+
url = {https://github.com/codelion/adaptive-classifier}
|
| 119 |
+
}
|
| 120 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"config": {
|
| 3 |
+
"batch_size": 4,
|
| 4 |
+
"cost_coefficients": {},
|
| 5 |
+
"cost_function_type": "separable",
|
| 6 |
+
"device_map": "auto",
|
| 7 |
+
"early_stopping_patience": 2,
|
| 8 |
+
"enable_strategic_mode": false,
|
| 9 |
+
"epochs": 20,
|
| 10 |
+
"ewc_lambda": 100.0,
|
| 11 |
+
"gradient_checkpointing": false,
|
| 12 |
+
"learning_rate": 2e-05,
|
| 13 |
+
"max_examples_per_class": 1000,
|
| 14 |
+
"max_length": 2048,
|
| 15 |
+
"min_confidence": 0.1,
|
| 16 |
+
"min_examples_per_class": 3,
|
| 17 |
+
"neural_weight": 0.3,
|
| 18 |
+
"num_representative_examples": 5,
|
| 19 |
+
"prototype_update_frequency": 10,
|
| 20 |
+
"prototype_weight": 0.7,
|
| 21 |
+
"quantization": null,
|
| 22 |
+
"similarity_threshold": 0.6,
|
| 23 |
+
"strategic_blend_regular_weight": 0.6,
|
| 24 |
+
"strategic_blend_strategic_weight": 0.4,
|
| 25 |
+
"strategic_lambda": 0.1,
|
| 26 |
+
"strategic_prediction_head_weight": 0.5,
|
| 27 |
+
"strategic_prediction_proto_weight": 0.5,
|
| 28 |
+
"strategic_robust_head_weight": 0.2,
|
| 29 |
+
"strategic_robust_proto_weight": 0.8,
|
| 30 |
+
"strategic_training_frequency": 10,
|
| 31 |
+
"warmup_steps": 0
|
| 32 |
+
},
|
| 33 |
+
"embedding_dim": 768,
|
| 34 |
+
"id_to_label": {
|
| 35 |
+
"0": "administrativnie_pravo",
|
| 36 |
+
"1": "avtovlasnykam",
|
| 37 |
+
"10": "inshe",
|
| 38 |
+
"11": "intieliektualna_vlasnist",
|
| 39 |
+
"12": "investitsii",
|
| 40 |
+
"13": "korporativnie_pravo",
|
| 41 |
+
"14": "kriminalnie_pravo",
|
| 42 |
+
"15": "litsienzuvannia",
|
| 43 |
+
"16": "medicina",
|
| 44 |
+
"17": "mizhnarodni_pravovidnosini",
|
| 45 |
+
"18": "mytne_pravo",
|
| 46 |
+
"19": "nierukhomist",
|
| 47 |
+
"2": "bankivska_diialnist",
|
| 48 |
+
"20": "notarialni_pytanniia",
|
| 49 |
+
"21": "opodatkuvannia",
|
| 50 |
+
"22": "pidpriemnicka_dialnist",
|
| 51 |
+
"23": "piensiiata_sotsialni_viplati",
|
| 52 |
+
"24": "pratsevlashtuvvannya",
|
| 53 |
+
"25": "prava_spozhivachiv",
|
| 54 |
+
"26": "prava_vnutrishno_pieriemishchienikh_osib",
|
| 55 |
+
"27": "reklama",
|
| 56 |
+
"28": "reyestraciya_likvidaciya_bankrutstvo",
|
| 57 |
+
"29": "simejne_pravo",
|
| 58 |
+
"3": "dierzhavni_zakupivli",
|
| 59 |
+
"30": "sotsialnyj_zakhist",
|
| 60 |
+
"31": "spadkove_pravo",
|
| 61 |
+
"32": "strakhuvannya",
|
| 62 |
+
"33": "sudova_praktika",
|
| 63 |
+
"34": "tsivilne_pravo",
|
| 64 |
+
"35": "vighotovliennia_produktsiyi_ta_nadannia_poslugh",
|
| 65 |
+
"36": "viiskovie_pravo",
|
| 66 |
+
"37": "zhitlovi_pravovidnosini",
|
| 67 |
+
"38": "ziemielnie_pravo",
|
| 68 |
+
"4": "doghovirni_vidnosini",
|
| 69 |
+
"5": "dovircha_vlastnist",
|
| 70 |
+
"6": "ekologiya",
|
| 71 |
+
"7": "gospodarskie_pravo",
|
| 72 |
+
"8": "gromadianski_pravovidnosini",
|
| 73 |
+
"9": "immighratsiia_iemighratsiia"
|
| 74 |
+
},
|
| 75 |
+
"label_to_id": {
|
| 76 |
+
"administrativnie_pravo": 0,
|
| 77 |
+
"avtovlasnykam": 1,
|
| 78 |
+
"bankivska_diialnist": 2,
|
| 79 |
+
"dierzhavni_zakupivli": 3,
|
| 80 |
+
"doghovirni_vidnosini": 4,
|
| 81 |
+
"dovircha_vlastnist": 5,
|
| 82 |
+
"ekologiya": 6,
|
| 83 |
+
"gospodarskie_pravo": 7,
|
| 84 |
+
"gromadianski_pravovidnosini": 8,
|
| 85 |
+
"immighratsiia_iemighratsiia": 9,
|
| 86 |
+
"inshe": 10,
|
| 87 |
+
"intieliektualna_vlasnist": 11,
|
| 88 |
+
"investitsii": 12,
|
| 89 |
+
"korporativnie_pravo": 13,
|
| 90 |
+
"kriminalnie_pravo": 14,
|
| 91 |
+
"litsienzuvannia": 15,
|
| 92 |
+
"medicina": 16,
|
| 93 |
+
"mizhnarodni_pravovidnosini": 17,
|
| 94 |
+
"mytne_pravo": 18,
|
| 95 |
+
"nierukhomist": 19,
|
| 96 |
+
"notarialni_pytanniia": 20,
|
| 97 |
+
"opodatkuvannia": 21,
|
| 98 |
+
"pidpriemnicka_dialnist": 22,
|
| 99 |
+
"piensiiata_sotsialni_viplati": 23,
|
| 100 |
+
"pratsevlashtuvvannya": 24,
|
| 101 |
+
"prava_spozhivachiv": 25,
|
| 102 |
+
"prava_vnutrishno_pieriemishchienikh_osib": 26,
|
| 103 |
+
"reklama": 27,
|
| 104 |
+
"reyestraciya_likvidaciya_bankrutstvo": 28,
|
| 105 |
+
"simejne_pravo": 29,
|
| 106 |
+
"sotsialnyj_zakhist": 30,
|
| 107 |
+
"spadkove_pravo": 31,
|
| 108 |
+
"strakhuvannya": 32,
|
| 109 |
+
"sudova_praktika": 33,
|
| 110 |
+
"tsivilne_pravo": 34,
|
| 111 |
+
"vighotovliennia_produktsiyi_ta_nadannia_poslugh": 35,
|
| 112 |
+
"viiskovie_pravo": 36,
|
| 113 |
+
"zhitlovi_pravovidnosini": 37,
|
| 114 |
+
"ziemielnie_pravo": 38
|
| 115 |
+
},
|
| 116 |
+
"library_name": "adaptive-classifier",
|
| 117 |
+
"model_name": "distilbert/distilbert-base-cased",
|
| 118 |
+
"train_steps": 1,
|
| 119 |
+
"training_history": {
|
| 120 |
+
"administrativnie_pravo": 31,
|
| 121 |
+
"avtovlasnykam": 151,
|
| 122 |
+
"bankivska_diialnist": 101,
|
| 123 |
+
"dierzhavni_zakupivli": 2,
|
| 124 |
+
"doghovirni_vidnosini": 41,
|
| 125 |
+
"dovircha_vlastnist": 7,
|
| 126 |
+
"ekologiya": 3,
|
| 127 |
+
"gospodarskie_pravo": 38,
|
| 128 |
+
"gromadianski_pravovidnosini": 32,
|
| 129 |
+
"immighratsiia_iemighratsiia": 107,
|
| 130 |
+
"inshe": 858,
|
| 131 |
+
"intieliektualna_vlasnist": 22,
|
| 132 |
+
"investitsii": 5,
|
| 133 |
+
"korporativnie_pravo": 12,
|
| 134 |
+
"kriminalnie_pravo": 81,
|
| 135 |
+
"litsienzuvannia": 9,
|
| 136 |
+
"medicina": 67,
|
| 137 |
+
"mizhnarodni_pravovidnosini": 12,
|
| 138 |
+
"mytne_pravo": 3,
|
| 139 |
+
"nierukhomist": 97,
|
| 140 |
+
"notarialni_pytanniia": 19,
|
| 141 |
+
"opodatkuvannia": 131,
|
| 142 |
+
"pidpriemnicka_dialnist": 43,
|
| 143 |
+
"piensiiata_sotsialni_viplati": 154,
|
| 144 |
+
"pratsevlashtuvvannya": 181,
|
| 145 |
+
"prava_spozhivachiv": 30,
|
| 146 |
+
"prava_vnutrishno_pieriemishchienikh_osib": 111,
|
| 147 |
+
"reklama": 2,
|
| 148 |
+
"reyestraciya_likvidaciya_bankrutstvo": 78,
|
| 149 |
+
"simejne_pravo": 288,
|
| 150 |
+
"sotsialnyj_zakhist": 172,
|
| 151 |
+
"spadkove_pravo": 80,
|
| 152 |
+
"strakhuvannya": 2,
|
| 153 |
+
"sudova_praktika": 154,
|
| 154 |
+
"tsivilne_pravo": 117,
|
| 155 |
+
"vighotovliennia_produktsiyi_ta_nadannia_poslugh": 4,
|
| 156 |
+
"viiskovie_pravo": 594,
|
| 157 |
+
"zhitlovi_pravovidnosini": 58,
|
| 158 |
+
"ziemielnie_pravo": 64
|
| 159 |
+
}
|
| 160 |
+
}
|
examples.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61146512e436a0cf0ec73969e3f89302788d2b5579b9036640bdde40d72ab635
|
| 3 |
+
size 3727684
|
onnx/config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation": "gelu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DistilBertForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.1,
|
| 7 |
+
"dim": 768,
|
| 8 |
+
"dropout": 0.1,
|
| 9 |
+
"hidden_dim": 3072,
|
| 10 |
+
"initializer_range": 0.02,
|
| 11 |
+
"max_position_embeddings": 512,
|
| 12 |
+
"model_type": "distilbert",
|
| 13 |
+
"n_heads": 12,
|
| 14 |
+
"n_layers": 6,
|
| 15 |
+
"output_past": true,
|
| 16 |
+
"pad_token_id": 0,
|
| 17 |
+
"qa_dropout": 0.1,
|
| 18 |
+
"seq_classif_dropout": 0.2,
|
| 19 |
+
"sinusoidal_pos_embds": false,
|
| 20 |
+
"tie_weights_": true,
|
| 21 |
+
"transformers_version": "4.55.4",
|
| 22 |
+
"vocab_size": 28996
|
| 23 |
+
}
|
onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ef959177dc7a7a88a7c9d905ab62814f7a5db356652361e09e294cf83481f2b7
|
| 3 |
+
size 260856969
|
onnx/model_quantized.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb8bd747105195b4d74435ee99ac9607a352c85073cf26198b07b289abebde83
|
| 3 |
+
size 65567815
|
onnx/ort_config.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"one_external_file": true,
|
| 3 |
+
"opset": null,
|
| 4 |
+
"optimization": {},
|
| 5 |
+
"quantization": {
|
| 6 |
+
"activations_dtype": "QUInt8",
|
| 7 |
+
"activations_symmetric": false,
|
| 8 |
+
"format": "QOperator",
|
| 9 |
+
"is_static": false,
|
| 10 |
+
"mode": "IntegerOps",
|
| 11 |
+
"nodes_to_exclude": [],
|
| 12 |
+
"nodes_to_quantize": [],
|
| 13 |
+
"operators_to_quantize": [
|
| 14 |
+
"Conv",
|
| 15 |
+
"MatMul",
|
| 16 |
+
"Attention",
|
| 17 |
+
"LSTM",
|
| 18 |
+
"Gather",
|
| 19 |
+
"Transpose",
|
| 20 |
+
"EmbedLayerNormalization"
|
| 21 |
+
],
|
| 22 |
+
"per_channel": false,
|
| 23 |
+
"qdq_add_pair_to_weight": false,
|
| 24 |
+
"qdq_dedicated_pair": false,
|
| 25 |
+
"qdq_op_type_per_channel_support_to_axis": {
|
| 26 |
+
"MatMul": 1
|
| 27 |
+
},
|
| 28 |
+
"reduce_range": false,
|
| 29 |
+
"weights_dtype": "QInt8",
|
| 30 |
+
"weights_symmetric": true
|
| 31 |
+
},
|
| 32 |
+
"use_external_data_format": false
|
| 33 |
+
}
|
onnx/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
onnx/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
onnx/tokenizer_config.json
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": false,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "[PAD]",
|
| 51 |
+
"sep_token": "[SEP]",
|
| 52 |
+
"strip_accents": null,
|
| 53 |
+
"tokenize_chinese_chars": true,
|
| 54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 55 |
+
"unk_token": "[UNK]"
|
| 56 |
+
}
|
onnx/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|