--- license: gemma language: - it - en base_model: anakin87/gemma-2-2b-neogenesis-ita pipeline_tag: text-generation library_name: transformers datasets: - efederici/capybara-claude-15k-ita - anakin87/fine-instructions-ita-70k - mii-llm/argilla-math-preferences-it - ruggsea/wsdm2024-cot-dataset - anakin87/evol-dpo-ita-reranked - anakin87/gemma-vs-gemma-preferences - mlabonne/orpo-dpo-mix-40k tags: - TensorBlock - GGUF ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## anakin87/gemma-2-2b-neogenesis-ita - GGUF This repo contains GGUF format model files for [anakin87/gemma-2-2b-neogenesis-ita](https://huggingface.co/anakin87/gemma-2-2b-neogenesis-ita). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects
Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` user {prompt} model ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [gemma-2-2b-neogenesis-ita-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q2_K.gguf) | Q2_K | 1.230 GB | smallest, significant quality loss - not recommended for most purposes | | [gemma-2-2b-neogenesis-ita-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_S.gguf) | Q3_K_S | 1.361 GB | very small, high quality loss | | [gemma-2-2b-neogenesis-ita-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_M.gguf) | Q3_K_M | 1.462 GB | very small, high quality loss | | [gemma-2-2b-neogenesis-ita-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_L.gguf) | Q3_K_L | 1.550 GB | small, substantial quality loss | | [gemma-2-2b-neogenesis-ita-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_0.gguf) | Q4_0 | 1.630 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [gemma-2-2b-neogenesis-ita-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_K_S.gguf) | Q4_K_S | 1.639 GB | small, greater quality loss | | [gemma-2-2b-neogenesis-ita-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_K_M.gguf) | Q4_K_M | 1.709 GB | medium, balanced quality - recommended | | [gemma-2-2b-neogenesis-ita-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_0.gguf) | Q5_0 | 1.883 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [gemma-2-2b-neogenesis-ita-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_K_S.gguf) | Q5_K_S | 1.883 GB | large, low quality loss - recommended | | [gemma-2-2b-neogenesis-ita-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_K_M.gguf) | Q5_K_M | 1.923 GB | large, very low quality loss - recommended | | [gemma-2-2b-neogenesis-ita-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q6_K.gguf) | Q6_K | 2.151 GB | very large, extremely low quality loss | | [gemma-2-2b-neogenesis-ita-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q8_0.gguf) | Q8_0 | 2.784 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/gemma-2-2b-neogenesis-ita-GGUF --include "gemma-2-2b-neogenesis-ita-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/gemma-2-2b-neogenesis-ita-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```