File size: 7,205 Bytes
399b63e bc5f7e2 399b63e 6b9e417 eaa9a30 6b9e417 eaa9a30 6b9e417 399b63e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
license: gemma
language:
- it
- en
base_model: anakin87/gemma-2-2b-neogenesis-ita
pipeline_tag: text-generation
library_name: transformers
datasets:
- efederici/capybara-claude-15k-ita
- anakin87/fine-instructions-ita-70k
- mii-llm/argilla-math-preferences-it
- ruggsea/wsdm2024-cot-dataset
- anakin87/evol-dpo-ita-reranked
- anakin87/gemma-vs-gemma-preferences
- mlabonne/orpo-dpo-mix-40k
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## anakin87/gemma-2-2b-neogenesis-ita - GGUF
This repo contains GGUF format model files for [anakin87/gemma-2-2b-neogenesis-ita](https://huggingface.co/anakin87/gemma-2-2b-neogenesis-ita).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π Try it now! π</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
<bos><start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [gemma-2-2b-neogenesis-ita-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q2_K.gguf) | Q2_K | 1.230 GB | smallest, significant quality loss - not recommended for most purposes |
| [gemma-2-2b-neogenesis-ita-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_S.gguf) | Q3_K_S | 1.361 GB | very small, high quality loss |
| [gemma-2-2b-neogenesis-ita-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_M.gguf) | Q3_K_M | 1.462 GB | very small, high quality loss |
| [gemma-2-2b-neogenesis-ita-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q3_K_L.gguf) | Q3_K_L | 1.550 GB | small, substantial quality loss |
| [gemma-2-2b-neogenesis-ita-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_0.gguf) | Q4_0 | 1.630 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [gemma-2-2b-neogenesis-ita-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_K_S.gguf) | Q4_K_S | 1.639 GB | small, greater quality loss |
| [gemma-2-2b-neogenesis-ita-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q4_K_M.gguf) | Q4_K_M | 1.709 GB | medium, balanced quality - recommended |
| [gemma-2-2b-neogenesis-ita-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_0.gguf) | Q5_0 | 1.883 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [gemma-2-2b-neogenesis-ita-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_K_S.gguf) | Q5_K_S | 1.883 GB | large, low quality loss - recommended |
| [gemma-2-2b-neogenesis-ita-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q5_K_M.gguf) | Q5_K_M | 1.923 GB | large, very low quality loss - recommended |
| [gemma-2-2b-neogenesis-ita-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q6_K.gguf) | Q6_K | 2.151 GB | very large, extremely low quality loss |
| [gemma-2-2b-neogenesis-ita-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-2-2b-neogenesis-ita-GGUF/blob/main/gemma-2-2b-neogenesis-ita-Q8_0.gguf) | Q8_0 | 2.784 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/gemma-2-2b-neogenesis-ita-GGUF --include "gemma-2-2b-neogenesis-ita-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/gemma-2-2b-neogenesis-ita-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|