--- library_name: transformers tags: - medical datasets: - stefan-m-lenz/ICDOPS-QA-2024 language: - de base_model: - Qwen/Qwen2.5-7B-Instruct-1M --- # Model Card for Model stefan-m-lenz/Qwen2.5-7B-Instruct This model is a PEFT adapter (e.g., LoRA) fine-tuned using the dataset [ICDOPS-QA-2024](https://huggingface.co/datasets/stefan-m-lenz/ICDOPS-QA-2024) based on [Qwen/Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M). For more information about the training, see the [dataset card](https://huggingface.co/datasets/stefan-m-lenz/ICDOPS-QA-2024). # Usage Package prerequisites: ``` pip install transformers accelerate peft ``` Load the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig repo_id = "stefan-m-lenz/Qwen-2.5-7B-ICDOPS-QA-2024" config = PeftConfig.from_pretrained(repo_id, device_map="auto") model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map="auto") model = PeftModel.from_pretrained(model, repo_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, device_map="auto") # Test input test_input = """Welche ICD-10-Kodierung wird für die Tumordiagnose "Bronchialkarzinom, Hauptbronchus" verwendet? Antworte nur mit dem ICD-10 Code.""" input_str = tokenizer.apply_chat_template( [{"role": "user", "content": test_input}], tokenize=False, add_generation_prompt=True, ) # Generate response inputs = tokenizer(input_str, return_tensors="pt").to("cuda") outputs = model.generate( **inputs, max_new_tokens=7, do_sample=False, pad_token_id=tokenizer.eos_token_id, temperature=None, top_p=None, top_k=None, ) generated_tokens = outputs[0, inputs["input_ids"].shape[1]:] response = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip() print("Test Input:", test_input) print("Model Response:", response) ```