Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,346 Bytes
55fe803 62594be 55fe803 7fe20c3 55fe803 eee0c8d 55fe803 62594be 7fe20c3 55fe803 7fe20c3 55fe803 3176199 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 c96ee5c bfe4467 55fe803 7fe20c3 55fe803 7fe20c3 55fe803 cac275d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import torch
import spaces
import gradio as gr
from diffusers import DiffusionPipeline
MAX_SEED = 2**32 - 1
# Load the pipeline once at startup
print("Loading Z-Image-Turbo pipeline...")
pipe = DiffusionPipeline.from_pretrained(
"Tongyi-MAI/Z-Image-Turbo",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=False,
)
pipe.to("cuda")
# ======== AoTI compilation + FA3 ========
pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"]
spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3")
print("Pipeline loaded!")
@spaces.GPU
def generate_image(
prompt,
negative_prompt,
height,
width,
num_inference_steps,
guidance_scale,
seed,
randomize_seed,
progress=gr.Progress(track_tqdm=True),
):
"""Generate 4 images with seeds: seed, 2x, 3x, 4x (mod MAX_SEED)."""
if randomize_seed:
seed = torch.randint(0, MAX_SEED, (1,)).item()
base_seed = int(seed) % MAX_SEED
if base_seed < 0:
base_seed += MAX_SEED
seeds = [(base_seed * i) % MAX_SEED for i in range(1, 5)]
neg_prompt = None
if isinstance(negative_prompt, str) and negative_prompt.strip():
neg_prompt = negative_prompt
images = []
for s in seeds:
generator = torch.Generator("cuda").manual_seed(int(s))
image = pipe(
prompt=prompt,
negative_prompt=neg_prompt,
height=int(height),
width=int(width),
num_inference_steps=int(num_inference_steps),
guidance_scale=float(guidance_scale), # 0.0 is recommended default for Turbo
generator=generator,
).images[0]
images.append(image)
return images, ", ".join(str(s) for s in seeds)
# Example prompts
examples = [
["Young Chinese woman in red Hanfu, intricate embroidery. Impeccable makeup, red floral forehead pattern. Elaborate high bun, golden phoenix headdress, red flowers, beads. Holds round folding fan with lady, trees, bird. Neon lightning-bolt lamp, bright yellow glow, above extended left palm. Soft-lit outdoor night background, silhouetted tiered pagoda, blurred colorful distant lights."],
["A majestic dragon soaring through clouds at sunset, scales shimmering with iridescent colors, detailed fantasy art style"],
["Cozy coffee shop interior, warm lighting, rain on windows, plants on shelves, vintage aesthetic, photorealistic"],
["Astronaut riding a horse on Mars, cinematic lighting, sci-fi concept art, highly detailed"],
["Portrait of a wise old wizard with a long white beard, holding a glowing crystal staff, magical forest background"],
]
# Build the Gradio interface
with gr.Blocks(title="Z-Image-Turbo Demo") as demo:
gr.Markdown(
"""
# 🎨 Z-Image-Turbo Demo
Generate high-quality images using the [Tongyi-MAI/Z-Image-Turbo](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo) model.
This turbo model generates images in just 8 inference steps!
"""
)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your image description...",
lines=4,
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Things you don't want in the image...",
lines=3,
)
with gr.Row():
height = gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=64,
label="Height",
)
width = gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=64,
label="Width",
)
with gr.Row():
num_inference_steps = gr.Slider(
minimum=1,
maximum=20,
value=9,
step=1,
label="Inference Steps",
info="9 steps results in 8 DiT forwards",
)
guidance_scale = gr.Slider(
minimum=0.0,
maximum=7.0,
value=0.0,
step=0.1,
label="CFG Guidance Scale",
info="0 = no CFG (recommended for Turbo models)",
)
with gr.Row():
seed = gr.Number(
label="Seed",
value=42,
precision=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Seed",
value=False,
)
generate_btn = gr.Button("🚀 Generate", variant="primary", size="lg")
with gr.Column(scale=1):
output_images = gr.Gallery(
label="Generated Images",
columns=2,
rows=2,
preview=True,
)
used_seeds = gr.Textbox(
label="Seeds Used (base, 2x, 3x, 4x)",
interactive=False,
)
gr.Markdown("### 💡 Example Prompts")
gr.Examples(
examples=examples,
inputs=[prompt],
cache_examples=False,
)
gr.Markdown("Demo by [mrfakename](https://x.com/realmrfakename). Model by Alibaba. The model is licensed under Apache 2.0, you can use generated images commercially! Thanks to [multimodalart](https://huggingface.co/multimodalart) for the FA3 + AoTI enhancements/speedups")
# Connect the generate button
generate_btn.click(
fn=generate_image,
inputs=[prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed],
outputs=[output_images, used_seeds],
)
# Also allow generating by pressing Enter in the prompt box
prompt.submit(
fn=generate_image,
inputs=[prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, seed, randomize_seed],
outputs=[output_images, used_seeds],
)
if __name__ == "__main__":
demo.launch(mcp_server=True, show_error=True)
|