experiments with open_clip, templates, clustering, recursion
Browse files- experimental/clip_app.py +3 -2
- experimental/clip_app_client.py +2 -1
- experimental/vision001.py +2 -0
- experimental/vision002.py +9 -3
experimental/clip_app.py
CHANGED
|
@@ -11,6 +11,7 @@ from clip_retrieval.load_clip import load_clip, get_tokenizer
|
|
| 11 |
# from clip_retrieval.clip_client import ClipClient, Modality
|
| 12 |
|
| 13 |
@serve.deployment(num_replicas=6, ray_actor_options={"num_cpus": .2, "num_gpus": 0.1})
|
|
|
|
| 14 |
class CLIPTransform:
|
| 15 |
def __init__(self):
|
| 16 |
# os.environ["OMP_NUM_THREADS"] = "20"
|
|
@@ -18,7 +19,7 @@ class CLIPTransform:
|
|
| 18 |
# Load model
|
| 19 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 20 |
self._clip_model="ViT-L/14"
|
| 21 |
-
self.
|
| 22 |
self.model, self.preprocess = load_clip(self._clip_model, use_jit=True, device=self.device)
|
| 23 |
self.tokenizer = get_tokenizer(self._clip_model)
|
| 24 |
|
|
@@ -104,7 +105,7 @@ class CLIPTransform:
|
|
| 104 |
else:
|
| 105 |
print ("Invalid request")
|
| 106 |
raise Exception("Invalid request")
|
| 107 |
-
return embeddings.cpu().numpy().tolist()
|
| 108 |
|
| 109 |
request = await http_request.json()
|
| 110 |
# print(type(request))
|
|
|
|
| 11 |
# from clip_retrieval.clip_client import ClipClient, Modality
|
| 12 |
|
| 13 |
@serve.deployment(num_replicas=6, ray_actor_options={"num_cpus": .2, "num_gpus": 0.1})
|
| 14 |
+
# @serve.deployment(num_replicas=3, ray_actor_options={"num_cpus": .2, "num_gpus": 0.2})
|
| 15 |
class CLIPTransform:
|
| 16 |
def __init__(self):
|
| 17 |
# os.environ["OMP_NUM_THREADS"] = "20"
|
|
|
|
| 19 |
# Load model
|
| 20 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 21 |
self._clip_model="ViT-L/14"
|
| 22 |
+
# self._clip_model="open_clip:ViT-H-14"
|
| 23 |
self.model, self.preprocess = load_clip(self._clip_model, use_jit=True, device=self.device)
|
| 24 |
self.tokenizer = get_tokenizer(self._clip_model)
|
| 25 |
|
|
|
|
| 105 |
else:
|
| 106 |
print ("Invalid request")
|
| 107 |
raise Exception("Invalid request")
|
| 108 |
+
return embeddings.float().cpu().numpy().tolist()
|
| 109 |
|
| 110 |
request = await http_request.json()
|
| 111 |
# print(type(request))
|
experimental/clip_app_client.py
CHANGED
|
@@ -28,10 +28,11 @@ class ClipAppClient:
|
|
| 28 |
"""
|
| 29 |
|
| 30 |
def __init__(self, clip_model="ViT-L/14", device=None):
|
|
|
|
| 31 |
self.clip_model = clip_model
|
| 32 |
self.device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 33 |
print("using device", self.device)
|
| 34 |
-
|
| 35 |
self.tokenizer = get_tokenizer(clip_model)
|
| 36 |
|
| 37 |
def preprocess_image(self, image_url):
|
|
|
|
| 28 |
"""
|
| 29 |
|
| 30 |
def __init__(self, clip_model="ViT-L/14", device=None):
|
| 31 |
+
# def __init__(self, clip_model="open_clip:ViT-H-14", device=None):
|
| 32 |
self.clip_model = clip_model
|
| 33 |
self.device = device or ("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 34 |
print("using device", self.device)
|
| 35 |
+
_, self.preprocess = load_clip(clip_model, use_jit=True, device=self.device)
|
| 36 |
self.tokenizer = get_tokenizer(clip_model)
|
| 37 |
|
| 38 |
def preprocess_image(self, image_url):
|
experimental/vision001.py
CHANGED
|
@@ -12,6 +12,8 @@ from clip_retrieval.clip_client import ClipClient, Modality
|
|
| 12 |
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
|
| 13 |
map_clip_to_clip_retreval = {
|
| 14 |
"ViT-L/14": "laion5B-L-14",
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
|
|
|
|
| 12 |
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
|
| 13 |
map_clip_to_clip_retreval = {
|
| 14 |
"ViT-L/14": "laion5B-L-14",
|
| 15 |
+
"open_clip:ViT-H-14": "laion5B-H-14",
|
| 16 |
+
"open_clip:ViT-L-14": "laion5B-L-14",
|
| 17 |
}
|
| 18 |
|
| 19 |
|
experimental/vision002.py
CHANGED
|
@@ -12,6 +12,8 @@ from clip_retrieval.clip_client import ClipClient, Modality
|
|
| 12 |
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
|
| 13 |
map_clip_to_clip_retreval = {
|
| 14 |
"ViT-L/14": "laion5B-L-14",
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
|
|
@@ -55,8 +57,8 @@ def clustering_templates(embeddings, n_clusters=5):
|
|
| 55 |
return templates
|
| 56 |
|
| 57 |
# test_image_path = os.path.join(os.getcwd(), "images", "plant-001.png")
|
| 58 |
-
test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-001.jpeg")
|
| 59 |
-
|
| 60 |
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-002.jpeg")
|
| 61 |
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "car-002.jpeg")
|
| 62 |
|
|
@@ -78,6 +80,7 @@ print (f"embeddings: {preprocessed_image_embeddings.shape}")
|
|
| 78 |
|
| 79 |
|
| 80 |
template = preprocessed_image_embeddings
|
|
|
|
| 81 |
for step_num in range(3):
|
| 82 |
print (f"\n\n---- Step {step_num} ----")
|
| 83 |
|
|
@@ -123,7 +126,10 @@ for step_num in range(3):
|
|
| 123 |
# template = clusters[cluster_similarity[0][1]]
|
| 124 |
template = preprocessed_image_embeddings * (len(clusters)-1)
|
| 125 |
for i in range(1, len(clusters)):
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
| 127 |
print("---")
|
| 128 |
print(f"seaching based on template")
|
| 129 |
results = clip_retrieval_client.query(embedding_input=template[0].tolist())
|
|
|
|
| 12 |
clip_retrieval_service_url = "https://knn.laion.ai/knn-service"
|
| 13 |
map_clip_to_clip_retreval = {
|
| 14 |
"ViT-L/14": "laion5B-L-14",
|
| 15 |
+
"open_clip:ViT-H-14": "laion5B-H-14",
|
| 16 |
+
"open_clip:ViT-L-14": "laion5B-L-14",
|
| 17 |
}
|
| 18 |
|
| 19 |
|
|
|
|
| 57 |
return templates
|
| 58 |
|
| 59 |
# test_image_path = os.path.join(os.getcwd(), "images", "plant-001.png")
|
| 60 |
+
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-001.jpeg")
|
| 61 |
+
test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-002.jpeg")
|
| 62 |
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "plant-002.jpeg")
|
| 63 |
# test_image_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "images", "car-002.jpeg")
|
| 64 |
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
template = preprocessed_image_embeddings
|
| 83 |
+
template = template / template.norm()
|
| 84 |
for step_num in range(3):
|
| 85 |
print (f"\n\n---- Step {step_num} ----")
|
| 86 |
|
|
|
|
| 126 |
# template = clusters[cluster_similarity[0][1]]
|
| 127 |
template = preprocessed_image_embeddings * (len(clusters)-1)
|
| 128 |
for i in range(1, len(clusters)):
|
| 129 |
+
cluster = clusters[cluster_similarity[i][1]]
|
| 130 |
+
normalized_cluster = cluster / cluster.norm()
|
| 131 |
+
template -= normalized_cluster
|
| 132 |
+
template = template / template.norm()
|
| 133 |
print("---")
|
| 134 |
print(f"seaching based on template")
|
| 135 |
results = clip_retrieval_client.query(embedding_input=template[0].tolist())
|