Spaces:
Running
on
T4
Running
on
T4
meg-huggingface
commited on
Commit
·
e3f1c3d
1
Parent(s):
6c0cd22
Merge in frimelle in-progress work.
Browse files- app.py +111 -23
- src/process.py +1 -0
- src/prompts.py +47 -0
- src/tts.py +43 -0
app.py
CHANGED
|
@@ -2,12 +2,14 @@ import gradio as gr
|
|
| 2 |
|
| 3 |
import src.generate as generate
|
| 4 |
import src.process as process
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
# ------------------- UI printing functions -------------------
|
| 8 |
def clear_all():
|
| 9 |
-
# target, user_transcript, score_html, diff_html, result_html
|
| 10 |
-
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
def make_result_html(pass_threshold, passed, ratio):
|
|
@@ -66,15 +68,17 @@ def make_html(sentence_match):
|
|
| 66 |
sentence_match.user_tokens,
|
| 67 |
sentence_match.alignments)
|
| 68 |
result_html, score_html = make_result_html(sentence_match.pass_threshold,
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
return score_html, result_html, diff_html
|
| 73 |
|
| 74 |
|
| 75 |
# ------------------- Core Check (English-only) -------------------
|
| 76 |
-
def get_user_transcript(audio_path: gr.Audio, target_sentence: str,
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
Parameters:
|
| 79 |
audio_path: Processed audio file returned from gradio Audio component.
|
| 80 |
target_sentence: Sentence the user needs to say.
|
|
@@ -84,7 +88,6 @@ def get_user_transcript(audio_path: gr.Audio, target_sentence: str, model_id: st
|
|
| 84 |
error_msg: If there's an error, a string describing what happened.
|
| 85 |
user_transcript: The recognized user utterance.
|
| 86 |
"""
|
| 87 |
-
error_msg = ""
|
| 88 |
# Handles user interaction errors.
|
| 89 |
if not target_sentence:
|
| 90 |
return "Please generate a sentence first.", ""
|
|
@@ -92,20 +95,18 @@ def get_user_transcript(audio_path: gr.Audio, target_sentence: str, model_id: st
|
|
| 92 |
if audio_path is None:
|
| 93 |
return "Please start, record, then stop the audio recording before trying to transcribe.", ""
|
| 94 |
|
| 95 |
-
# Runs automatic speech recognition
|
| 96 |
user_transcript = process.run_asr(audio_path, model_id, device_pref)
|
| 97 |
|
| 98 |
# Handles processing errors.
|
| 99 |
-
if
|
| 100 |
return f"Transcription failed: {user_transcript}", ""
|
| 101 |
-
|
| 102 |
-
return error_msg, user_transcript
|
| 103 |
|
| 104 |
|
| 105 |
def transcribe_check(audio_path, target_sentence, model_id, device_pref,
|
| 106 |
pass_threshold):
|
| 107 |
-
"""Transcribe
|
| 108 |
-
create the output HTML string displaying the results.
|
| 109 |
Parameters:
|
| 110 |
audio_path: Local path to recorded audio.
|
| 111 |
target_sentence: Sentence the user needs to say.
|
|
@@ -118,21 +119,67 @@ def transcribe_check(audio_path, target_sentence, model_id, device_pref,
|
|
| 118 |
result_html: HTML string describing the results, or an error message
|
| 119 |
"""
|
| 120 |
# Transcribe user input
|
| 121 |
-
error_msg, user_transcript = get_user_transcript(audio_path,
|
| 122 |
-
|
| 123 |
-
|
|
|
|
| 124 |
score_html = ""
|
| 125 |
diff_html = ""
|
| 126 |
result_html = error_msg
|
| 127 |
else:
|
| 128 |
# Calculate match details between the target and recognized user input
|
| 129 |
-
sentence_match = process.SentenceMatcher(target_sentence,
|
|
|
|
| 130 |
pass_threshold)
|
| 131 |
# Create the output to print out
|
| 132 |
score_html, result_html, diff_html = make_html(sentence_match)
|
| 133 |
return user_transcript, score_html, result_html, diff_html
|
| 134 |
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
# ------------------- UI -------------------
|
| 137 |
with gr.Blocks(title="Say the Sentence (English)") as demo:
|
| 138 |
gr.Markdown(
|
|
@@ -141,6 +188,7 @@ with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
| 141 |
1) Generate a sentence.
|
| 142 |
2) Record yourself reading it.
|
| 143 |
3) Transcribe & check your accuracy.
|
|
|
|
| 144 |
"""
|
| 145 |
)
|
| 146 |
|
|
@@ -161,8 +209,8 @@ with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
| 161 |
choices=[
|
| 162 |
"openai/whisper-tiny.en", # fastest (CPU-friendly)
|
| 163 |
"openai/whisper-base.en", # better accuracy, a bit slower
|
| 164 |
-
"distil-whisper/distil-small.en"
|
| 165 |
-
|
| 166 |
],
|
| 167 |
value="openai/whisper-tiny.en",
|
| 168 |
label="ASR model (English only)",
|
|
@@ -185,18 +233,58 @@ with gr.Blocks(title="Say the Sentence (English)") as demo:
|
|
| 185 |
diff_html = gr.HTML(
|
| 186 |
label="Word-level diff (red = expected but missing / green = extra or replacement)")
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
# -------- Events --------
|
| 189 |
-
#
|
| 190 |
btn_gen.click(fn=generate.gen_sentence_set, outputs=target)
|
| 191 |
-
#
|
| 192 |
# btn_gen.click(fn=generate.gen_sentence_llm, outputs=target)
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
btn_check.click(
|
| 196 |
fn=transcribe_check,
|
| 197 |
inputs=[audio, target, model_id, device_pref, pass_threshold],
|
| 198 |
outputs=[user_transcript, score_html, result_html, diff_html]
|
| 199 |
)
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
if __name__ == "__main__":
|
| 202 |
demo.launch()
|
|
|
|
| 2 |
|
| 3 |
import src.generate as generate
|
| 4 |
import src.process as process
|
| 5 |
+
import src.tts as tts
|
| 6 |
|
| 7 |
|
| 8 |
# ------------------- UI printing functions -------------------
|
| 9 |
def clear_all():
|
| 10 |
+
# target, user_transcript, score_html, diff_html, result_html,
|
| 11 |
+
# tts_text, clone_status, tts_audio
|
| 12 |
+
return "", "", "", "", "", "", "", None
|
| 13 |
|
| 14 |
|
| 15 |
def make_result_html(pass_threshold, passed, ratio):
|
|
|
|
| 68 |
sentence_match.user_tokens,
|
| 69 |
sentence_match.alignments)
|
| 70 |
result_html, score_html = make_result_html(sentence_match.pass_threshold,
|
| 71 |
+
sentence_match.passed,
|
| 72 |
+
sentence_match.ratio)
|
| 73 |
|
| 74 |
return score_html, result_html, diff_html
|
| 75 |
|
| 76 |
|
| 77 |
# ------------------- Core Check (English-only) -------------------
|
| 78 |
+
def get_user_transcript(audio_path: gr.Audio, target_sentence: str,
|
| 79 |
+
model_id: str, device_pref: str) -> (str, str):
|
| 80 |
+
"""ASR for the input audio and basic validation.
|
| 81 |
+
Uses the selected ASR model `model_id` to recognize words in the input `audio_path`.
|
| 82 |
Parameters:
|
| 83 |
audio_path: Processed audio file returned from gradio Audio component.
|
| 84 |
target_sentence: Sentence the user needs to say.
|
|
|
|
| 88 |
error_msg: If there's an error, a string describing what happened.
|
| 89 |
user_transcript: The recognized user utterance.
|
| 90 |
"""
|
|
|
|
| 91 |
# Handles user interaction errors.
|
| 92 |
if not target_sentence:
|
| 93 |
return "Please generate a sentence first.", ""
|
|
|
|
| 95 |
if audio_path is None:
|
| 96 |
return "Please start, record, then stop the audio recording before trying to transcribe.", ""
|
| 97 |
|
| 98 |
+
# Runs the automatic speech recognition
|
| 99 |
user_transcript = process.run_asr(audio_path, model_id, device_pref)
|
| 100 |
|
| 101 |
# Handles processing errors.
|
| 102 |
+
if isinstance(user_transcript, Exception):
|
| 103 |
return f"Transcription failed: {user_transcript}", ""
|
| 104 |
+
return "", user_transcript
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
def transcribe_check(audio_path, target_sentence, model_id, device_pref,
|
| 108 |
pass_threshold):
|
| 109 |
+
"""Transcribe user, calculate match to target sentence, create results HTML.
|
|
|
|
| 110 |
Parameters:
|
| 111 |
audio_path: Local path to recorded audio.
|
| 112 |
target_sentence: Sentence the user needs to say.
|
|
|
|
| 119 |
result_html: HTML string describing the results, or an error message
|
| 120 |
"""
|
| 121 |
# Transcribe user input
|
| 122 |
+
error_msg, user_transcript = get_user_transcript(audio_path,
|
| 123 |
+
target_sentence, model_id,
|
| 124 |
+
device_pref)
|
| 125 |
+
if error_msg:
|
| 126 |
score_html = ""
|
| 127 |
diff_html = ""
|
| 128 |
result_html = error_msg
|
| 129 |
else:
|
| 130 |
# Calculate match details between the target and recognized user input
|
| 131 |
+
sentence_match = process.SentenceMatcher(target_sentence,
|
| 132 |
+
user_transcript,
|
| 133 |
pass_threshold)
|
| 134 |
# Create the output to print out
|
| 135 |
score_html, result_html, diff_html = make_html(sentence_match)
|
| 136 |
return user_transcript, score_html, result_html, diff_html
|
| 137 |
|
| 138 |
|
| 139 |
+
# ------------------- Voice cloning gate -------------------
|
| 140 |
+
def clone_if_pass(
|
| 141 |
+
audio_path, # ref voice (the same recorded clip)
|
| 142 |
+
target_sentence, # sentence user was supposed to say
|
| 143 |
+
user_transcript, # what ASR heard
|
| 144 |
+
tts_text, # what we want to synthesize (in cloned voice)
|
| 145 |
+
pass_threshold, # must meet or exceed this
|
| 146 |
+
tts_model_id, # e.g., "coqui/XTTS-v2"
|
| 147 |
+
tts_language, # e.g., "en"
|
| 148 |
+
):
|
| 149 |
+
"""
|
| 150 |
+
If user correctly read the target (>= threshold), clone their voice from the
|
| 151 |
+
recorded audio and speak 'tts_text'. Otherwise, refuse.
|
| 152 |
+
"""
|
| 153 |
+
# Basic validations
|
| 154 |
+
if audio_path is None:
|
| 155 |
+
return None, "Record audio first (reference voice is required)."
|
| 156 |
+
if not target_sentence:
|
| 157 |
+
return None, "Generate a target sentence first."
|
| 158 |
+
if not user_transcript:
|
| 159 |
+
return None, "Transcribe first to verify the sentence."
|
| 160 |
+
if not tts_text:
|
| 161 |
+
return None, "Enter the sentence to synthesize."
|
| 162 |
+
|
| 163 |
+
# Recompute pass/fail to avoid relying on UI state
|
| 164 |
+
sm = process.SentenceMatcher(target_sentence, user_transcript,
|
| 165 |
+
pass_threshold)
|
| 166 |
+
if not sm.passed:
|
| 167 |
+
return None, (
|
| 168 |
+
f"❌ Cloning blocked: your reading did not reach the threshold "
|
| 169 |
+
f"({sm.ratio * 100:.1f}% < {int(pass_threshold * 100)}%)."
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Run zero-shot cloning
|
| 173 |
+
out = tts.run_tts_clone(audio_path, tts_text, model_id=tts_model_id,
|
| 174 |
+
language=tts_language)
|
| 175 |
+
if isinstance(out, Exception):
|
| 176 |
+
return None, f"Voice cloning failed: {out}"
|
| 177 |
+
sr, wav = out
|
| 178 |
+
# Gradio Audio can take a tuple (sr, np.array)
|
| 179 |
+
return (
|
| 180 |
+
sr, wav), f"✅ Cloned and synthesized with {tts_model_id} ({tts_language})."
|
| 181 |
+
|
| 182 |
+
|
| 183 |
# ------------------- UI -------------------
|
| 184 |
with gr.Blocks(title="Say the Sentence (English)") as demo:
|
| 185 |
gr.Markdown(
|
|
|
|
| 188 |
1) Generate a sentence.
|
| 189 |
2) Record yourself reading it.
|
| 190 |
3) Transcribe & check your accuracy.
|
| 191 |
+
4) If matched, clone your voice to speak any sentence you enter.
|
| 192 |
"""
|
| 193 |
)
|
| 194 |
|
|
|
|
| 209 |
choices=[
|
| 210 |
"openai/whisper-tiny.en", # fastest (CPU-friendly)
|
| 211 |
"openai/whisper-base.en", # better accuracy, a bit slower
|
| 212 |
+
"distil-whisper/distil-small.en" # optional distil English model
|
| 213 |
+
"distil-whisper/distil-small.en",
|
| 214 |
],
|
| 215 |
value="openai/whisper-tiny.en",
|
| 216 |
label="ASR model (English only)",
|
|
|
|
| 233 |
diff_html = gr.HTML(
|
| 234 |
label="Word-level diff (red = expected but missing / green = extra or replacement)")
|
| 235 |
|
| 236 |
+
# gr.Markdown("## 🔁 Voice cloning (gated)")
|
| 237 |
+
# with gr.Row():
|
| 238 |
+
# tts_text = gr.Textbox(
|
| 239 |
+
# label="Text to synthesize (voice clone)",
|
| 240 |
+
# placeholder="Type the sentence you want the cloned voice to say",
|
| 241 |
+
# )
|
| 242 |
+
# with gr.Row():
|
| 243 |
+
# tts_model_id = gr.Dropdown(
|
| 244 |
+
# choices=[
|
| 245 |
+
# "coqui/XTTS-v2",
|
| 246 |
+
# # add others if you like, e.g. "myshell-ai/MeloTTS"
|
| 247 |
+
# ],
|
| 248 |
+
# value="coqui/XTTS-v2",
|
| 249 |
+
# label="TTS (voice cloning) model",
|
| 250 |
+
# )
|
| 251 |
+
# tts_language = gr.Dropdown(
|
| 252 |
+
# choices=["en", "de", "fr", "es", "it", "pt", "pl", "tr", "ru", "nl",
|
| 253 |
+
# "cs", "ar", "zh"],
|
| 254 |
+
# value="en",
|
| 255 |
+
# label="Language",
|
| 256 |
+
# )
|
| 257 |
+
|
| 258 |
+
# with gr.Row():
|
| 259 |
+
# btn_clone = gr.Button("🔁 Clone voice (if passed)", variant="secondary")
|
| 260 |
+
# with gr.Row():
|
| 261 |
+
# tts_audio = gr.Audio(label="Cloned speech output", interactive=False)
|
| 262 |
+
# clone_status = gr.Label(label="Cloning status")
|
| 263 |
+
|
| 264 |
# -------- Events --------
|
| 265 |
+
# Use pre-specified sentence bank by default
|
| 266 |
btn_gen.click(fn=generate.gen_sentence_set, outputs=target)
|
| 267 |
+
# Or use LLM generation:
|
| 268 |
# btn_gen.click(fn=generate.gen_sentence_llm, outputs=target)
|
| 269 |
+
|
| 270 |
+
btn_clear.click(
|
| 271 |
+
fn=clear_all,
|
| 272 |
+
outputs=[target, user_transcript, score_html, result_html, diff_html,]
|
| 273 |
+
# tts_text, clone_status, tts_audio]
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
btn_check.click(
|
| 277 |
fn=transcribe_check,
|
| 278 |
inputs=[audio, target, model_id, device_pref, pass_threshold],
|
| 279 |
outputs=[user_transcript, score_html, result_html, diff_html]
|
| 280 |
)
|
| 281 |
|
| 282 |
+
# btn_clone.click(
|
| 283 |
+
# fn=clone_if_pass,
|
| 284 |
+
# inputs=[audio, target, user_transcript, tts_text, pass_threshold,
|
| 285 |
+
# tts_model_id, tts_language],
|
| 286 |
+
# outputs=[tts_audio, clone_status],
|
| 287 |
+
# )
|
| 288 |
+
|
| 289 |
if __name__ == "__main__":
|
| 290 |
demo.launch()
|
src/process.py
CHANGED
|
@@ -85,3 +85,4 @@ class SentenceMatcher:
|
|
| 85 |
self.ratio, self.alignments = similarity_and_diff(self.target_tokens,
|
| 86 |
self.user_tokens)
|
| 87 |
self.passed: bool = self.ratio >= self.pass_threshold
|
|
|
|
|
|
| 85 |
self.ratio, self.alignments = similarity_and_diff(self.target_tokens,
|
| 86 |
self.user_tokens)
|
| 87 |
self.passed: bool = self.ratio >= self.pass_threshold
|
| 88 |
+
|
src/prompts.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/utils/prompts.py
|
| 2 |
+
|
| 3 |
+
def get_consent_generation_prompt(audio_model_name: str, short_prompt: bool = False) -> str:
|
| 4 |
+
"""
|
| 5 |
+
Returns a text prompt instructing the model to generate a natural-sounding
|
| 6 |
+
consent sentence for voice cloning with the specified model.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
audio_model_name (str): Name of the audio model to mention in the prompt.
|
| 10 |
+
short_prompt (bool): If True, returns a concise one-line prompt suitable
|
| 11 |
+
for direct model input. If False (default), returns the full detailed prompt.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
str: The prompt text.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
if short_prompt:
|
| 18 |
+
return (
|
| 19 |
+
f"Generate one natural, spoken-style English sentence (10–20 words) in which a person "
|
| 20 |
+
f"clearly gives informed consent to use their voice for generating synthetic audio "
|
| 21 |
+
f"with the model {audio_model_name}. The sentence should sound conversational, include "
|
| 22 |
+
f"a clear consent phrase like 'I give my consent' or 'I agree', mention {audio_model_name} "
|
| 23 |
+
f"by name, and be phonetically varied but neutral in tone. Output only the final sentence."
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
return f"""
|
| 27 |
+
Generate a short, natural-sounding English sentence (10–20 words) that a person could say aloud
|
| 28 |
+
to clearly state their informed consent to use their voice for generating synthetic audio with
|
| 29 |
+
an AI model called {audio_model_name}.
|
| 30 |
+
|
| 31 |
+
The sentence should:
|
| 32 |
+
- Sound natural and conversational, not like legal text.
|
| 33 |
+
- Explicitly include a consent phrase, such as “I give my consent,” “I agree,” or “I allow.”
|
| 34 |
+
- Mention the model name ({audio_model_name}) clearly in the sentence.
|
| 35 |
+
- Include a neutral descriptive clause before or after the consent phrase to add phonetic variety
|
| 36 |
+
(e.g., “The weather today is bright and calm” or “This recording is made clearly and freely.”)
|
| 37 |
+
- Have a neutral or polite tone (no emotional extremes).
|
| 38 |
+
- Be comfortable to read aloud and phonetically rich, covering diverse vowels and consonants naturally.
|
| 39 |
+
- Be self-contained, so the full sentence can serve as an independent audio clip.
|
| 40 |
+
|
| 41 |
+
Examples of structure to follow:
|
| 42 |
+
- “The weather is clear and warm today. I give my consent to use my voice for generating audio with the model {audio_model_name}.”
|
| 43 |
+
- “I give my consent to use my voice for generating audio with the model {audio_model_name}. This statement is made freely and clearly.”
|
| 44 |
+
- “Good afternoon. I agree to the use of my recorded voice for audio generation with the model {audio_model_name}.”
|
| 45 |
+
|
| 46 |
+
The output should be a single, natural sentence ready to be spoken aloud for recording purposes.
|
| 47 |
+
"""
|
src/tts.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# src/tts.py
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
from typing import Tuple, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
|
| 8 |
+
# We use the text-to-speech pipeline with XTTS v2 (zero-shot cloning)
|
| 9 |
+
# Example forward params: {"speaker_wav": "/path/to/ref.wav", "language": "en"}
|
| 10 |
+
|
| 11 |
+
def get_tts_pipeline(model_id: str):
|
| 12 |
+
"""
|
| 13 |
+
Create a TTS pipeline for the given model.
|
| 14 |
+
XTTS v2 works well for zero-shot cloning and is available on the Hub.
|
| 15 |
+
"""
|
| 16 |
+
# NOTE: Add device selection similar to ASR if needed
|
| 17 |
+
return pipeline("text-to-speech", model=model_id)
|
| 18 |
+
|
| 19 |
+
def run_tts_clone(
|
| 20 |
+
ref_audio_path: str,
|
| 21 |
+
text_to_speak: str,
|
| 22 |
+
model_id: str = "coqui/XTTS-v2",
|
| 23 |
+
language: str = "en",
|
| 24 |
+
) -> Union[Tuple[int, np.ndarray], Exception]:
|
| 25 |
+
"""
|
| 26 |
+
Synthesize 'text_to_speak' in the cloned voice from 'ref_audio_path'.
|
| 27 |
+
|
| 28 |
+
Returns:
|
| 29 |
+
(sampling_rate, waveform) on success, or Exception on failure.
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
tts = get_tts_pipeline(model_id)
|
| 33 |
+
result = tts(
|
| 34 |
+
text_to_speak,
|
| 35 |
+
forward_params={"speaker_wav": ref_audio_path, "language": language},
|
| 36 |
+
)
|
| 37 |
+
# transformers TTS returns dict like: {"audio": {"array": np.ndarray, "sampling_rate": 24000}}
|
| 38 |
+
audio = result["audio"]
|
| 39 |
+
sr = int(audio["sampling_rate"])
|
| 40 |
+
wav = audio["array"].astype(np.float32)
|
| 41 |
+
return sr, wav
|
| 42 |
+
except Exception as e:
|
| 43 |
+
return e
|