|
|
|
|
|
|
|
|
import numpy as np |
|
|
import cv2 |
|
|
import gradio as gr |
|
|
|
|
|
|
|
|
PROTOTXT = "colorization_deploy_v2.prototxt" |
|
|
POINTS = "pts_in_hull.npy" |
|
|
MODEL = "colorization_release_v2.caffemodel" |
|
|
|
|
|
|
|
|
print("Load model") |
|
|
net = cv2.dnn.readNetFromCaffe(PROTOTXT, MODEL) |
|
|
pts = np.load(POINTS) |
|
|
|
|
|
|
|
|
class8 = net.getLayerId("class8_ab") |
|
|
conv8 = net.getLayerId("conv8_313_rh") |
|
|
pts = pts.transpose().reshape(2, 313, 1, 1) |
|
|
net.getLayer(class8).blobs = [pts.astype("float32")] |
|
|
net.getLayer(conv8).blobs = [np.full([1, 313], 2.606, dtype="float32")] |
|
|
|
|
|
|
|
|
def colorizedTheImage(image): |
|
|
scaled = image.astype("float32") / 255.0 |
|
|
lab = cv2.cvtColor(scaled, cv2.COLOR_BGR2LAB) |
|
|
|
|
|
resized = cv2.resize(lab, (224, 224)) |
|
|
L = cv2.split(resized)[0] |
|
|
L -= 50 |
|
|
|
|
|
print("Colorizing the image") |
|
|
net.setInput(cv2.dnn.blobFromImage(L)) |
|
|
ab = net.forward()[0, :, :, :].transpose((1, 2, 0)) |
|
|
|
|
|
ab = cv2.resize(ab, (image.shape[1], image.shape[0])) |
|
|
|
|
|
L = cv2.split(lab)[0] |
|
|
colorized = np.concatenate((L[:, :, np.newaxis], ab), axis=2) |
|
|
|
|
|
colorized = cv2.cvtColor(colorized, cv2.COLOR_LAB2BGR) |
|
|
colorized = np.clip(colorized, 0, 1) |
|
|
|
|
|
colorized = (255 * colorized).astype("uint8") |
|
|
colorized = cv2.cvtColor(colorized, cv2.COLOR_RGB2BGR) |
|
|
return colorized |
|
|
|
|
|
demo=gr.Interface(fn=colorizedTheImage, |
|
|
inputs=["image"], |
|
|
outputs=["image"], |
|
|
examples=[["einstein.jpg"],["tiger.jpg"],["building.jpg"],["nature.jpg"]], |
|
|
title="Black&White To Color Image") |
|
|
demo.launch(debug=True) |