Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import base64
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
import cv2
|
| 9 |
+
import tempfile
|
| 10 |
+
import os
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import requests
|
| 13 |
+
import json
|
| 14 |
+
import time
|
| 15 |
+
|
| 16 |
+
# Initialize models
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
+
# Text-to-speech pipeline
|
| 20 |
+
tts_pipeline = pipeline(
|
| 21 |
+
"text-to-speech",
|
| 22 |
+
model="microsoft/speecht5_tts",
|
| 23 |
+
device=device
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Initialize speaker embeddings for TTS
|
| 27 |
+
from datasets import load_dataset
|
| 28 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 29 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 30 |
+
|
| 31 |
+
# Character images (base64 encoded placeholders - in production, use actual character images)
|
| 32 |
+
CHARACTERS = {
|
| 33 |
+
"Character 1 - Friendly Robot": "",
|
| 34 |
+
|
| 35 |
+
"Character 2 - Cartoon Person": "",
|
| 36 |
+
|
| 37 |
+
"Character 3 - Cute Animal": ""
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
class TalkingCharacterGenerator:
|
| 41 |
+
def __init__(self):
|
| 42 |
+
self.temp_dir = tempfile.mkdtemp()
|
| 43 |
+
|
| 44 |
+
def generate_tts_audio(self, text):
|
| 45 |
+
"""Generate speech audio from text"""
|
| 46 |
+
try:
|
| 47 |
+
# Generate speech
|
| 48 |
+
speech = tts_pipeline(text, forward_params={"speaker_embeddings": speaker_embeddings})
|
| 49 |
+
|
| 50 |
+
# Save audio to temporary file
|
| 51 |
+
audio_path = os.path.join(self.temp_dir, "speech.wav")
|
| 52 |
+
|
| 53 |
+
# Convert to numpy array and save as WAV
|
| 54 |
+
audio_data = speech["audio"]
|
| 55 |
+
sample_rate = speech["sampling_rate"]
|
| 56 |
+
|
| 57 |
+
# Normalize audio
|
| 58 |
+
audio_data = audio_data / np.max(np.abs(audio_data))
|
| 59 |
+
|
| 60 |
+
# Save as WAV file
|
| 61 |
+
import soundfile as sf
|
| 62 |
+
sf.write(audio_path, audio_data, sample_rate)
|
| 63 |
+
|
| 64 |
+
return audio_path, len(audio_data) / sample_rate # Return path and duration
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"TTS Error: {e}")
|
| 67 |
+
return None, 0
|
| 68 |
+
|
| 69 |
+
def create_mouth_animation(self, character_image_data, duration, text):
|
| 70 |
+
"""Create mouth movement animation based on text and duration"""
|
| 71 |
+
try:
|
| 72 |
+
# Decode base64 image
|
| 73 |
+
if character_image_data.startswith('data:image'):
|
| 74 |
+
image_data = character_image_data.split(',')[1]
|
| 75 |
+
image_bytes = base64.b64decode(image_data)
|
| 76 |
+
else:
|
| 77 |
+
image_bytes = base64.b64decode(character_image_data)
|
| 78 |
+
|
| 79 |
+
# Create PIL image
|
| 80 |
+
image = Image.open(io.BytesIO(image_bytes))
|
| 81 |
+
image = image.convert('RGB')
|
| 82 |
+
image = image.resize((400, 400)) # Resize for better quality
|
| 83 |
+
|
| 84 |
+
# Convert to numpy array
|
| 85 |
+
img_array = np.array(image)
|
| 86 |
+
|
| 87 |
+
# Animation parameters
|
| 88 |
+
fps = 24
|
| 89 |
+
total_frames = int(duration * fps)
|
| 90 |
+
frames = []
|
| 91 |
+
|
| 92 |
+
# Simple mouth animation based on text analysis
|
| 93 |
+
words = text.split()
|
| 94 |
+
syllables_per_word = [max(1, len(word) // 2) for word in words]
|
| 95 |
+
total_syllables = sum(syllables_per_word)
|
| 96 |
+
|
| 97 |
+
for frame in range(total_frames):
|
| 98 |
+
# Copy the original image
|
| 99 |
+
frame_img = img_array.copy()
|
| 100 |
+
|
| 101 |
+
# Calculate mouth opening based on syllables and time
|
| 102 |
+
time_ratio = frame / total_frames
|
| 103 |
+
syllable_position = time_ratio * total_syllables
|
| 104 |
+
|
| 105 |
+
# Create mouth movement (simple animation)
|
| 106 |
+
mouth_open = abs(np.sin(syllable_position * np.pi * 2)) * 0.5 + 0.2
|
| 107 |
+
|
| 108 |
+
# Apply mouth animation (simple oval modification)
|
| 109 |
+
center_x, center_y = 200, 240 # Approximate mouth position
|
| 110 |
+
mouth_width = int(30 * (1 + mouth_open))
|
| 111 |
+
mouth_height = int(20 * mouth_open)
|
| 112 |
+
|
| 113 |
+
# Draw mouth (simple approach)
|
| 114 |
+
y_start = max(0, center_y - mouth_height // 2)
|
| 115 |
+
y_end = min(400, center_y + mouth_height // 2)
|
| 116 |
+
x_start = max(0, center_x - mouth_width // 2)
|
| 117 |
+
x_end = min(400, center_x + mouth_width // 2)
|
| 118 |
+
|
| 119 |
+
# Darken mouth area to simulate opening
|
| 120 |
+
frame_img[y_start:y_end, x_start:x_end] = frame_img[y_start:y_end, x_start:x_end] * 0.7
|
| 121 |
+
|
| 122 |
+
frames.append(frame_img)
|
| 123 |
+
|
| 124 |
+
# Create video from frames
|
| 125 |
+
video_path = os.path.join(self.temp_dir, "talking_character.mp4")
|
| 126 |
+
|
| 127 |
+
# Use OpenCV to create video
|
| 128 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 129 |
+
out = cv2.VideoWriter(video_path, fourcc, fps, (400, 400))
|
| 130 |
+
|
| 131 |
+
for frame in frames:
|
| 132 |
+
# Convert RGB to BGR for OpenCV
|
| 133 |
+
frame_bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 134 |
+
out.write(frame_bgr)
|
| 135 |
+
|
| 136 |
+
out.release()
|
| 137 |
+
|
| 138 |
+
return video_path
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
print(f"Animation Error: {e}")
|
| 142 |
+
return None
|
| 143 |
+
|
| 144 |
+
def generate_talking_character(self, text, character_choice):
|
| 145 |
+
"""Main function to generate talking character video"""
|
| 146 |
+
if not text or not character_choice:
|
| 147 |
+
return None, "Please provide text and select a character."
|
| 148 |
+
|
| 149 |
+
# Generate TTS audio
|
| 150 |
+
audio_path, duration = self.generate_tts_audio(text)
|
| 151 |
+
if not audio_path:
|
| 152 |
+
return None, "Failed to generate speech audio."
|
| 153 |
+
|
| 154 |
+
# Get character image
|
| 155 |
+
character_image = CHARACTERS.get(character_choice)
|
| 156 |
+
if not character_image:
|
| 157 |
+
return None, "Invalid character selection."
|
| 158 |
+
|
| 159 |
+
# Create mouth animation
|
| 160 |
+
video_path = self.create_mouth_animation(character_image, duration, text)
|
| 161 |
+
if not video_path:
|
| 162 |
+
return None, "Failed to create character animation."
|
| 163 |
+
|
| 164 |
+
return video_path, f"Successfully generated talking character video! Duration: {duration:.2f}s"
|
| 165 |
+
|
| 166 |
+
# Initialize the generator
|
| 167 |
+
generator = TalkingCharacterGenerator()
|
| 168 |
+
|
| 169 |
+
# Create Gradio interface
|
| 170 |
+
def create_talking_character(text, character):
|
| 171 |
+
"""Gradio interface function"""
|
| 172 |
+
try:
|
| 173 |
+
video_path, message = generator.generate_talking_character(text, character)
|
| 174 |
+
if video_path and os.path.exists(video_path):
|
| 175 |
+
return video_path, message
|
| 176 |
+
else:
|
| 177 |
+
return None, message
|
| 178 |
+
except Exception as e:
|
| 179 |
+
return None, f"Error: {str(e)}"
|
| 180 |
+
|
| 181 |
+
# Create the Gradio app
|
| 182 |
+
with gr.Blocks(title="Talking Character Generator", theme=gr.themes.Soft()) as app:
|
| 183 |
+
gr.Markdown("# 🎭 Talking Character Generator")
|
| 184 |
+
gr.Markdown("Generate videos of characters speaking your text with mouth movements!")
|
| 185 |
+
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column():
|
| 188 |
+
text_input = gr.Textbox(
|
| 189 |
+
label="Enter your text",
|
| 190 |
+
placeholder="Type what you want the character to say...",
|
| 191 |
+
lines=3,
|
| 192 |
+
max_lines=10
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
character_dropdown = gr.Dropdown(
|
| 196 |
+
choices=list(CHARACTERS.keys()),
|
| 197 |
+
label="Select Character",
|
| 198 |
+
value=list(CHARACTERS.keys())[0]
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
generate_btn = gr.Button("Generate Talking Character", variant="primary")
|
| 202 |
+
|
| 203 |
+
with gr.Column():
|
| 204 |
+
video_output = gr.Video(label="Generated Talking Character")
|
| 205 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
| 206 |
+
|
| 207 |
+
# Event handlers
|
| 208 |
+
generate_btn.click(
|
| 209 |
+
fn=create_talking_character,
|
| 210 |
+
inputs=[text_input, character_dropdown],
|
| 211 |
+
outputs=[video_output, status_output]
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Examples
|
| 215 |
+
gr.Examples(
|
| 216 |
+
examples=[
|
| 217 |
+
["Hello! Welcome to the talking character generator. I'm excited to speak your text!", "Character 1 - Friendly Robot"],
|
| 218 |
+
["Hi there! I'm a cartoon character and I love to chat with you!", "Character 2 - Cartoon Person"],
|
| 219 |
+
["Woof! I'm a cute animal character ready to speak your words!", "Character 3 - Cute Animal"]
|
| 220 |
+
],
|
| 221 |
+
inputs=[text_input, character_dropdown]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
if __name__ == "__main__":
|
| 225 |
+
app.launch(
|
| 226 |
+
server_name="0.0.0.0",
|
| 227 |
+
server_port=7860,
|
| 228 |
+
share=True
|
| 229 |
+
)
|