Spaces:
Runtime error
Runtime error
| from fastai.vision.all import * | |
| import librosa | |
| import gradio as gr | |
| import numpy as np | |
| import wandb | |
| from fastai.callback.wandb import * | |
| wandb.init() | |
| learn = load_learner('audio_mnist_classifier_v1.pkl') | |
| categories = learn.dls.vocab | |
| def mel_spectrogram_tfm(file): | |
| y, sr = librosa.load(file) | |
| y, _ = librosa.effects.trim(y) | |
| spec = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=2048, hop_length=512) | |
| spec_db = librosa.amplitude_to_db(spec, ref=np.max) | |
| return spec_db | |
| def classify(audio): | |
| spec_db = mel_spectrogram_tfm(audio) | |
| img = 'tmp.png' | |
| plt.imsave(img, spec_db) | |
| pred, idx, prob = learn.predict(img) | |
| return dict(zip(categories, map(float, prob))) | |
| interface = gr.Interface(fn=classify, | |
| inputs=gr.Audio(source="microphone", type="filepath"), | |
| outputs=gr.outputs.Label(num_top_classes=10), | |
| title='Audio MNIST Classification', | |
| description='Identifying digits (from 0 to 9) from an audio clip') | |
| interface.launch() |