Spaces:
Running
on
Zero
Running
on
Zero
Fix compatability for ZeroGPU
Browse files- profanity_detector.py +163 -78
- requirements.txt +2 -1
- temp_tts_output_1742102180.wav +0 -0
profanity_detector.py
CHANGED
|
@@ -24,19 +24,12 @@ logging.basicConfig(
|
|
| 24 |
)
|
| 25 |
logger = logging.getLogger('profanity_detector')
|
| 26 |
|
| 27 |
-
# ZeroGPU COMPATIBILITY NOTES:
|
| 28 |
-
# The @spaces.GPU decorators throughout this code enable compatibility with Hugging Face ZeroGPU.
|
| 29 |
-
# - They request GPU resources only when needed and release them after function completion
|
| 30 |
-
# - They have no effect when running in local environments or standard GPU Spaces
|
| 31 |
-
# - Custom durations can be specified for functions requiring longer processing times
|
| 32 |
-
# - For local development, you'll need: pip install huggingface_hub[spaces]
|
| 33 |
-
|
| 34 |
# Detect if we're running in a ZeroGPU environment
|
| 35 |
IS_ZEROGPU = os.environ.get("SPACE_RUNTIME_STATELESS", "0") == "1"
|
| 36 |
|
| 37 |
# Define device strategy that works in both environments
|
| 38 |
if IS_ZEROGPU:
|
| 39 |
-
# In ZeroGPU: initialize on CPU, will use GPU only in @spaces.GPU functions
|
| 40 |
device = torch.device("cpu")
|
| 41 |
logger.info("ZeroGPU environment detected. Using CPU for initial loading.")
|
| 42 |
else:
|
|
@@ -44,10 +37,6 @@ else:
|
|
| 44 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
logger.info(f"Local environment. Using device: {device}")
|
| 46 |
|
| 47 |
-
# Define device at the top of the script (global scope)
|
| 48 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 49 |
-
logger.info(f"Using device: {device}")
|
| 50 |
-
|
| 51 |
# Global variables for models
|
| 52 |
profanity_model = None
|
| 53 |
profanity_tokenizer = None
|
|
@@ -77,79 +66,73 @@ def load_models():
|
|
| 77 |
profanity_tokenizer = AutoTokenizer.from_pretrained(PROFANITY_MODEL)
|
| 78 |
|
| 79 |
# Load model without moving to CUDA directly
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
profanity_model = profanity_model.half()
|
| 95 |
-
logger.info("Successfully converted profanity model to half precision")
|
| 96 |
-
except Exception as e:
|
| 97 |
-
logger.warning(f"Could not convert to half precision: {str(e)}")
|
| 98 |
|
| 99 |
-
# Apply similar changes to all other model loading...
|
| 100 |
logger.info("Loading detoxification model...")
|
| 101 |
T5_MODEL = "s-nlp/t5-paranmt-detox"
|
| 102 |
t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL)
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
logger.warning(f"Could not convert to half precision: {str(e)}")
|
| 119 |
|
| 120 |
logger.info("Loading Whisper speech-to-text model...")
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
logger.info("Loading Text-to-Speech model...")
|
| 130 |
TTS_MODEL = "microsoft/speecht5_tts"
|
| 131 |
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
vocoder = vocoder.to(device)
|
| 150 |
|
| 151 |
# Speaker embeddings - always on CPU for ZeroGPU
|
| 152 |
speaker_embeddings = torch.zeros((1, 512))
|
|
|
|
| 153 |
if not IS_ZEROGPU and torch.cuda.is_available():
|
| 154 |
speaker_embeddings = speaker_embeddings.to(device)
|
| 155 |
|
|
@@ -182,8 +165,17 @@ def detect_profanity(text: str, threshold: float = 0.5):
|
|
| 182 |
try:
|
| 183 |
# Detect profanity and score
|
| 184 |
inputs = profanity_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 185 |
-
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
with torch.no_grad():
|
| 189 |
outputs = profanity_model(**inputs).logits
|
|
@@ -201,7 +193,7 @@ def detect_profanity(text: str, threshold: float = 0.5):
|
|
| 201 |
|
| 202 |
word_inputs = profanity_tokenizer(word, return_tensors="pt", truncation=True, max_length=512)
|
| 203 |
if torch.cuda.is_available():
|
| 204 |
-
word_inputs = word_inputs.to(
|
| 205 |
|
| 206 |
with torch.no_grad():
|
| 207 |
word_outputs = profanity_model(**word_inputs).logits
|
|
@@ -211,6 +203,10 @@ def detect_profanity(text: str, threshold: float = 0.5):
|
|
| 211 |
if word_score > threshold:
|
| 212 |
profane_words.append(word.lower())
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
# Create highlighted version of the text
|
| 215 |
highlighted_text = create_highlighted_text(text, profane_words)
|
| 216 |
|
|
@@ -225,6 +221,12 @@ def detect_profanity(text: str, threshold: float = 0.5):
|
|
| 225 |
except Exception as e:
|
| 226 |
error_msg = f"Error in profanity detection: {str(e)}"
|
| 227 |
logger.error(error_msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
return {"error": error_msg, "text": text, "score": 0, "profanity": False}
|
| 229 |
|
| 230 |
def create_highlighted_text(text, profane_words):
|
|
@@ -255,8 +257,16 @@ def rephrase_profanity(text):
|
|
| 255 |
try:
|
| 256 |
# Rephrase using the detoxification model
|
| 257 |
inputs = t5_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
# Use more conservative generation settings with error handling
|
| 262 |
try:
|
|
@@ -275,6 +285,10 @@ def rephrase_profanity(text):
|
|
| 275 |
logger.warning(f"T5 model produced unusable output: '{rephrased_text}'")
|
| 276 |
return text # Return original if output is too short
|
| 277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
return rephrased_text.strip()
|
| 279 |
|
| 280 |
except RuntimeError as e:
|
|
@@ -289,6 +303,11 @@ def rephrase_profanity(text):
|
|
| 289 |
early_stopping=True
|
| 290 |
)
|
| 291 |
rephrased_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 292 |
return rephrased_text.strip()
|
| 293 |
else:
|
| 294 |
raise e # Re-raise if it's not a memory issue
|
|
@@ -296,6 +315,12 @@ def rephrase_profanity(text):
|
|
| 296 |
except Exception as e:
|
| 297 |
error_msg = f"Error in rephrasing: {str(e)}"
|
| 298 |
logger.error(error_msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
return text # Return original text if rephrasing fails
|
| 300 |
|
| 301 |
@spaces.GPU
|
|
@@ -312,19 +337,37 @@ def text_to_speech(text):
|
|
| 312 |
|
| 313 |
# Process the text input
|
| 314 |
inputs = tts_processor(text=text, return_tensors="pt")
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
# Generate speech with a fixed speaker embedding
|
| 319 |
speech = tts_model.generate_speech(
|
| 320 |
inputs["input_ids"],
|
| 321 |
-
|
| 322 |
vocoder=vocoder
|
| 323 |
)
|
| 324 |
|
| 325 |
# Convert from PyTorch tensor to NumPy array
|
| 326 |
speech_np = speech.cpu().numpy()
|
| 327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
# Save as WAV file (sampling rate is 16kHz for SpeechT5)
|
| 329 |
write_wav(temp_file, 16000, speech_np)
|
| 330 |
|
|
@@ -332,6 +375,13 @@ def text_to_speech(text):
|
|
| 332 |
except Exception as e:
|
| 333 |
error_msg = f"Error in text-to-speech conversion: {str(e)}"
|
| 334 |
logger.error(error_msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
return None
|
| 336 |
|
| 337 |
def text_analysis(input_text, threshold=0.5):
|
|
@@ -402,10 +452,19 @@ def analyze_audio(audio_path, threshold=0.5):
|
|
| 402 |
return "No audio provided.", None, None
|
| 403 |
|
| 404 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
# Transcribe audio
|
| 406 |
result = whisper_model.transcribe(audio_path, fp16=torch.cuda.is_available())
|
| 407 |
text = result["text"]
|
| 408 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
# Detect profanity with user-defined threshold
|
| 410 |
analysis = detect_profanity(text, threshold=threshold)
|
| 411 |
|
|
@@ -432,6 +491,12 @@ def analyze_audio(audio_path, threshold=0.5):
|
|
| 432 |
except Exception as e:
|
| 433 |
error_msg = f"Error in audio analysis: {str(e)}\n{traceback.format_exc()}"
|
| 434 |
logger.error(error_msg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
return error_msg, None, None
|
| 436 |
|
| 437 |
# Global variables to store streaming results
|
|
@@ -497,10 +562,19 @@ def process_stream_chunk(audio_chunk):
|
|
| 497 |
stream_results["profanity_info"] = "Error: Failed to create audio file for processing"
|
| 498 |
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 499 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 500 |
# Process with Whisper
|
| 501 |
result = whisper_model.transcribe(temp_file, fp16=torch.cuda.is_available())
|
| 502 |
transcript = result["text"].strip()
|
| 503 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
# Skip processing if transcript is empty
|
| 505 |
if not transcript:
|
| 506 |
# Clean up temp file if we created it
|
|
@@ -554,6 +628,17 @@ def process_stream_chunk(audio_chunk):
|
|
| 554 |
error_msg = f"Error processing streaming audio: {str(e)}\n{traceback.format_exc()}"
|
| 555 |
logger.error(error_msg)
|
| 556 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
# Update profanity info with error message
|
| 558 |
stream_results["profanity_info"] = f"Error: {str(e)}"
|
| 559 |
|
|
|
|
| 24 |
)
|
| 25 |
logger = logging.getLogger('profanity_detector')
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Detect if we're running in a ZeroGPU environment
|
| 28 |
IS_ZEROGPU = os.environ.get("SPACE_RUNTIME_STATELESS", "0") == "1"
|
| 29 |
|
| 30 |
# Define device strategy that works in both environments
|
| 31 |
if IS_ZEROGPU:
|
| 32 |
+
# In ZeroGPU: always initialize on CPU, will use GPU only in @spaces.GPU functions
|
| 33 |
device = torch.device("cpu")
|
| 34 |
logger.info("ZeroGPU environment detected. Using CPU for initial loading.")
|
| 35 |
else:
|
|
|
|
| 37 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
logger.info(f"Local environment. Using device: {device}")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
# Global variables for models
|
| 41 |
profanity_model = None
|
| 42 |
profanity_tokenizer = None
|
|
|
|
| 66 |
profanity_tokenizer = AutoTokenizer.from_pretrained(PROFANITY_MODEL)
|
| 67 |
|
| 68 |
# Load model without moving to CUDA directly
|
| 69 |
+
profanity_model = AutoModelForSequenceClassification.from_pretrained(
|
| 70 |
+
PROFANITY_MODEL,
|
| 71 |
+
device_map=None, # Stay on CPU for now
|
| 72 |
+
low_cpu_mem_usage=True
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Only move to device if NOT in ZeroGPU mode
|
| 76 |
+
if not IS_ZEROGPU and torch.cuda.is_available():
|
| 77 |
+
profanity_model = profanity_model.to(device)
|
| 78 |
+
try:
|
| 79 |
+
profanity_model = profanity_model.half()
|
| 80 |
+
logger.info("Successfully converted profanity model to half precision")
|
| 81 |
+
except Exception as e:
|
| 82 |
+
logger.warning(f"Could not convert to half precision: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
| 84 |
logger.info("Loading detoxification model...")
|
| 85 |
T5_MODEL = "s-nlp/t5-paranmt-detox"
|
| 86 |
t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL)
|
| 87 |
|
| 88 |
+
t5_model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 89 |
+
T5_MODEL,
|
| 90 |
+
device_map=None, # Stay on CPU for now
|
| 91 |
+
low_cpu_mem_usage=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Only move to device if NOT in ZeroGPU mode
|
| 95 |
+
if not IS_ZEROGPU and torch.cuda.is_available():
|
| 96 |
+
t5_model = t5_model.to(device)
|
| 97 |
+
try:
|
| 98 |
+
t5_model = t5_model.half()
|
| 99 |
+
logger.info("Successfully converted T5 model to half precision")
|
| 100 |
+
except Exception as e:
|
| 101 |
+
logger.warning(f"Could not convert to half precision: {str(e)}")
|
|
|
|
| 102 |
|
| 103 |
logger.info("Loading Whisper speech-to-text model...")
|
| 104 |
+
# Always load on CPU in ZeroGPU mode
|
| 105 |
+
#whisper_model = whisper.load_model("medium" if IS_ZEROGPU else "large", device="cpu")
|
| 106 |
+
whisper_model = whisper.load_model("large-v2", device="cpu")
|
| 107 |
+
|
| 108 |
+
# Only move to device if NOT in ZeroGPU mode
|
| 109 |
+
if not IS_ZEROGPU and torch.cuda.is_available():
|
| 110 |
+
whisper_model = whisper_model.to(device)
|
| 111 |
|
| 112 |
logger.info("Loading Text-to-Speech model...")
|
| 113 |
TTS_MODEL = "microsoft/speecht5_tts"
|
| 114 |
tts_processor = SpeechT5Processor.from_pretrained(TTS_MODEL)
|
| 115 |
|
| 116 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
| 117 |
+
TTS_MODEL,
|
| 118 |
+
device_map=None, # Stay on CPU for now
|
| 119 |
+
low_cpu_mem_usage=True
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
vocoder = SpeechT5HifiGan.from_pretrained(
|
| 123 |
+
"microsoft/speecht5_hifigan",
|
| 124 |
+
device_map=None, # Stay on CPU for now
|
| 125 |
+
low_cpu_mem_usage=True
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
# Only move to device if NOT in ZeroGPU mode
|
| 129 |
+
if not IS_ZEROGPU and torch.cuda.is_available():
|
| 130 |
+
tts_model = tts_model.to(device)
|
| 131 |
+
vocoder = vocoder.to(device)
|
|
|
|
| 132 |
|
| 133 |
# Speaker embeddings - always on CPU for ZeroGPU
|
| 134 |
speaker_embeddings = torch.zeros((1, 512))
|
| 135 |
+
# Only move to device if NOT in ZeroGPU mode
|
| 136 |
if not IS_ZEROGPU and torch.cuda.is_available():
|
| 137 |
speaker_embeddings = speaker_embeddings.to(device)
|
| 138 |
|
|
|
|
| 165 |
try:
|
| 166 |
# Detect profanity and score
|
| 167 |
inputs = profanity_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 168 |
+
|
| 169 |
+
# In ZeroGPU, move to GPU here inside the spaces.GPU function
|
| 170 |
+
# For local environments, it might already be on the correct device
|
| 171 |
+
current_device = device
|
| 172 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 173 |
+
current_device = torch.device("cuda")
|
| 174 |
+
inputs = inputs.to(current_device)
|
| 175 |
+
# Only in ZeroGPU mode, we need to move the model to GPU inside the function
|
| 176 |
+
profanity_model.to(current_device)
|
| 177 |
+
elif torch.cuda.is_available(): # Local environment with CUDA
|
| 178 |
+
inputs = inputs.to(current_device)
|
| 179 |
|
| 180 |
with torch.no_grad():
|
| 181 |
outputs = profanity_model(**inputs).logits
|
|
|
|
| 193 |
|
| 194 |
word_inputs = profanity_tokenizer(word, return_tensors="pt", truncation=True, max_length=512)
|
| 195 |
if torch.cuda.is_available():
|
| 196 |
+
word_inputs = word_inputs.to(current_device)
|
| 197 |
|
| 198 |
with torch.no_grad():
|
| 199 |
word_outputs = profanity_model(**word_inputs).logits
|
|
|
|
| 203 |
if word_score > threshold:
|
| 204 |
profane_words.append(word.lower())
|
| 205 |
|
| 206 |
+
# Move model back to CPU if in ZeroGPU mode - to free GPU memory
|
| 207 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 208 |
+
profanity_model.to(torch.device("cpu"))
|
| 209 |
+
|
| 210 |
# Create highlighted version of the text
|
| 211 |
highlighted_text = create_highlighted_text(text, profane_words)
|
| 212 |
|
|
|
|
| 221 |
except Exception as e:
|
| 222 |
error_msg = f"Error in profanity detection: {str(e)}"
|
| 223 |
logger.error(error_msg)
|
| 224 |
+
# Make sure model is on CPU if in ZeroGPU mode - to free GPU memory
|
| 225 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 226 |
+
try:
|
| 227 |
+
profanity_model.to(torch.device("cpu"))
|
| 228 |
+
except:
|
| 229 |
+
pass
|
| 230 |
return {"error": error_msg, "text": text, "score": 0, "profanity": False}
|
| 231 |
|
| 232 |
def create_highlighted_text(text, profane_words):
|
|
|
|
| 257 |
try:
|
| 258 |
# Rephrase using the detoxification model
|
| 259 |
inputs = t5_tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 260 |
+
|
| 261 |
+
# In ZeroGPU, move to GPU here inside the spaces.GPU function
|
| 262 |
+
current_device = device
|
| 263 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 264 |
+
current_device = torch.device("cuda")
|
| 265 |
+
inputs = inputs.to(current_device)
|
| 266 |
+
# Only in ZeroGPU mode, we need to move the model to GPU inside the function
|
| 267 |
+
t5_model.to(current_device)
|
| 268 |
+
elif torch.cuda.is_available(): # Local environment with CUDA
|
| 269 |
+
inputs = inputs.to(current_device)
|
| 270 |
|
| 271 |
# Use more conservative generation settings with error handling
|
| 272 |
try:
|
|
|
|
| 285 |
logger.warning(f"T5 model produced unusable output: '{rephrased_text}'")
|
| 286 |
return text # Return original if output is too short
|
| 287 |
|
| 288 |
+
# Move model back to CPU if in ZeroGPU mode - to free GPU memory
|
| 289 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 290 |
+
t5_model.to(torch.device("cpu"))
|
| 291 |
+
|
| 292 |
return rephrased_text.strip()
|
| 293 |
|
| 294 |
except RuntimeError as e:
|
|
|
|
| 303 |
early_stopping=True
|
| 304 |
)
|
| 305 |
rephrased_text = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 306 |
+
|
| 307 |
+
# Move model back to CPU if in ZeroGPU mode - to free GPU memory
|
| 308 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 309 |
+
t5_model.to(torch.device("cpu"))
|
| 310 |
+
|
| 311 |
return rephrased_text.strip()
|
| 312 |
else:
|
| 313 |
raise e # Re-raise if it's not a memory issue
|
|
|
|
| 315 |
except Exception as e:
|
| 316 |
error_msg = f"Error in rephrasing: {str(e)}"
|
| 317 |
logger.error(error_msg)
|
| 318 |
+
# Make sure model is on CPU if in ZeroGPU mode - to free GPU memory
|
| 319 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 320 |
+
try:
|
| 321 |
+
t5_model.to(torch.device("cpu"))
|
| 322 |
+
except:
|
| 323 |
+
pass
|
| 324 |
return text # Return original text if rephrasing fails
|
| 325 |
|
| 326 |
@spaces.GPU
|
|
|
|
| 337 |
|
| 338 |
# Process the text input
|
| 339 |
inputs = tts_processor(text=text, return_tensors="pt")
|
| 340 |
+
|
| 341 |
+
# In ZeroGPU, move to GPU here inside the spaces.GPU function
|
| 342 |
+
current_device = device
|
| 343 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 344 |
+
current_device = torch.device("cuda")
|
| 345 |
+
inputs = inputs.to(current_device)
|
| 346 |
+
# Only in ZeroGPU mode, we need to move the models to GPU inside the function
|
| 347 |
+
tts_model.to(current_device)
|
| 348 |
+
vocoder.to(current_device)
|
| 349 |
+
speaker_embeddings_local = speaker_embeddings.to(current_device)
|
| 350 |
+
elif torch.cuda.is_available(): # Local environment with CUDA
|
| 351 |
+
inputs = inputs.to(current_device)
|
| 352 |
+
speaker_embeddings_local = speaker_embeddings
|
| 353 |
+
else:
|
| 354 |
+
speaker_embeddings_local = speaker_embeddings
|
| 355 |
|
| 356 |
# Generate speech with a fixed speaker embedding
|
| 357 |
speech = tts_model.generate_speech(
|
| 358 |
inputs["input_ids"],
|
| 359 |
+
speaker_embeddings_local,
|
| 360 |
vocoder=vocoder
|
| 361 |
)
|
| 362 |
|
| 363 |
# Convert from PyTorch tensor to NumPy array
|
| 364 |
speech_np = speech.cpu().numpy()
|
| 365 |
|
| 366 |
+
# Move models back to CPU if in ZeroGPU mode - to free GPU memory
|
| 367 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 368 |
+
tts_model.to(torch.device("cpu"))
|
| 369 |
+
vocoder.to(torch.device("cpu"))
|
| 370 |
+
|
| 371 |
# Save as WAV file (sampling rate is 16kHz for SpeechT5)
|
| 372 |
write_wav(temp_file, 16000, speech_np)
|
| 373 |
|
|
|
|
| 375 |
except Exception as e:
|
| 376 |
error_msg = f"Error in text-to-speech conversion: {str(e)}"
|
| 377 |
logger.error(error_msg)
|
| 378 |
+
# Make sure models are on CPU if in ZeroGPU mode - to free GPU memory
|
| 379 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 380 |
+
try:
|
| 381 |
+
tts_model.to(torch.device("cpu"))
|
| 382 |
+
vocoder.to(torch.device("cpu"))
|
| 383 |
+
except:
|
| 384 |
+
pass
|
| 385 |
return None
|
| 386 |
|
| 387 |
def text_analysis(input_text, threshold=0.5):
|
|
|
|
| 452 |
return "No audio provided.", None, None
|
| 453 |
|
| 454 |
try:
|
| 455 |
+
# In ZeroGPU mode, models need to be moved to GPU
|
| 456 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 457 |
+
current_device = torch.device("cuda")
|
| 458 |
+
whisper_model.to(current_device)
|
| 459 |
+
|
| 460 |
# Transcribe audio
|
| 461 |
result = whisper_model.transcribe(audio_path, fp16=torch.cuda.is_available())
|
| 462 |
text = result["text"]
|
| 463 |
|
| 464 |
+
# Move whisper model back to CPU if in ZeroGPU mode
|
| 465 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 466 |
+
whisper_model.to(torch.device("cpu"))
|
| 467 |
+
|
| 468 |
# Detect profanity with user-defined threshold
|
| 469 |
analysis = detect_profanity(text, threshold=threshold)
|
| 470 |
|
|
|
|
| 491 |
except Exception as e:
|
| 492 |
error_msg = f"Error in audio analysis: {str(e)}\n{traceback.format_exc()}"
|
| 493 |
logger.error(error_msg)
|
| 494 |
+
# Make sure models are on CPU if in ZeroGPU mode
|
| 495 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 496 |
+
try:
|
| 497 |
+
whisper_model.to(torch.device("cpu"))
|
| 498 |
+
except:
|
| 499 |
+
pass
|
| 500 |
return error_msg, None, None
|
| 501 |
|
| 502 |
# Global variables to store streaming results
|
|
|
|
| 562 |
stream_results["profanity_info"] = "Error: Failed to create audio file for processing"
|
| 563 |
return stream_results["transcript"], stream_results["profanity_info"], stream_results["clean_text"], stream_results["audio_output"]
|
| 564 |
|
| 565 |
+
# In ZeroGPU mode, move whisper model to GPU
|
| 566 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 567 |
+
current_device = torch.device("cuda")
|
| 568 |
+
whisper_model.to(current_device)
|
| 569 |
+
|
| 570 |
# Process with Whisper
|
| 571 |
result = whisper_model.transcribe(temp_file, fp16=torch.cuda.is_available())
|
| 572 |
transcript = result["text"].strip()
|
| 573 |
|
| 574 |
+
# Move whisper model back to CPU if in ZeroGPU mode
|
| 575 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 576 |
+
whisper_model.to(torch.device("cpu"))
|
| 577 |
+
|
| 578 |
# Skip processing if transcript is empty
|
| 579 |
if not transcript:
|
| 580 |
# Clean up temp file if we created it
|
|
|
|
| 628 |
error_msg = f"Error processing streaming audio: {str(e)}\n{traceback.format_exc()}"
|
| 629 |
logger.error(error_msg)
|
| 630 |
|
| 631 |
+
# Make sure all models are on CPU if in ZeroGPU mode
|
| 632 |
+
if IS_ZEROGPU and torch.cuda.is_available():
|
| 633 |
+
try:
|
| 634 |
+
whisper_model.to(torch.device("cpu"))
|
| 635 |
+
profanity_model.to(torch.device("cpu"))
|
| 636 |
+
t5_model.to(torch.device("cpu"))
|
| 637 |
+
tts_model.to(torch.device("cpu"))
|
| 638 |
+
vocoder.to(torch.device("cpu"))
|
| 639 |
+
except:
|
| 640 |
+
pass
|
| 641 |
+
|
| 642 |
# Update profanity info with error message
|
| 643 |
stream_results["profanity_info"] = f"Error: {str(e)}"
|
| 644 |
|
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ torch
|
|
| 7 |
transformers
|
| 8 |
pillow
|
| 9 |
sentencepiece
|
| 10 |
-
spaces
|
|
|
|
|
|
| 7 |
transformers
|
| 8 |
pillow
|
| 9 |
sentencepiece
|
| 10 |
+
spaces
|
| 11 |
+
accelerate
|
temp_tts_output_1742102180.wav
ADDED
|
Binary file (217 kB). View file
|
|
|