Veena
commited on
Commit
·
d1c3c57
1
Parent(s):
06301dc
Update Maya1 Gradio app with preset characters
Browse files- app.py +123 -67
- requirements.txt +0 -2
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
import io
|
| 4 |
-
import
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Mock spaces module for local testing
|
| 8 |
try:
|
|
@@ -14,11 +16,18 @@ except ImportError:
|
|
| 14 |
return func
|
| 15 |
spaces = SpacesMock()
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Preset characters (2 realistic + 2 creative)
|
| 24 |
PRESET_CHARACTERS = {
|
|
@@ -40,53 +49,77 @@ PRESET_CHARACTERS = {
|
|
| 40 |
}
|
| 41 |
}
|
| 42 |
|
| 43 |
-
# Global
|
| 44 |
model = None
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
pipeline = None
|
| 48 |
models_loaded = False
|
| 49 |
|
| 50 |
-
def
|
| 51 |
-
"""
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
print("Warning: CUDA not available, using CPU")
|
| 63 |
-
device = "cpu"
|
| 64 |
-
else:
|
| 65 |
-
device = "cuda"
|
| 66 |
-
print(f"CUDA available: {torch.cuda.get_device_name(0)}")
|
| 67 |
|
| 68 |
-
|
| 69 |
-
os.environ.setdefault("VLLM_USE_V1", "0")
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
)
|
|
|
|
| 87 |
|
| 88 |
-
print("
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
|
| 91 |
models_loaded = True
|
| 92 |
print("Models loaded successfully!")
|
|
@@ -100,7 +133,7 @@ def preset_selected(preset_name):
|
|
| 100 |
|
| 101 |
@spaces.GPU
|
| 102 |
def generate_speech(preset_name, description, text, temperature, max_tokens):
|
| 103 |
-
"""Generate emotional speech from description and text using
|
| 104 |
try:
|
| 105 |
# Load models if not already loaded
|
| 106 |
load_models()
|
|
@@ -115,42 +148,65 @@ def generate_speech(preset_name, description, text, temperature, max_tokens):
|
|
| 115 |
|
| 116 |
print(f"Generating with temperature={temperature}, max_tokens={max_tokens}...")
|
| 117 |
|
| 118 |
-
#
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
repetition_penalty=1.1,
|
| 129 |
-
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
-
)
|
| 132 |
-
loop.close()
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
wav_buffer = io.BytesIO()
|
| 140 |
with wave.open(wav_buffer, 'wb') as wav_file:
|
| 141 |
wav_file.setnchannels(1)
|
| 142 |
wav_file.setsampwidth(2)
|
| 143 |
wav_file.setframerate(AUDIO_SAMPLE_RATE)
|
| 144 |
-
wav_file.writeframes(
|
| 145 |
|
| 146 |
wav_buffer.seek(0)
|
| 147 |
-
|
| 148 |
-
# Calculate duration
|
| 149 |
-
duration = len(audio_bytes) // 2 / AUDIO_SAMPLE_RATE
|
| 150 |
-
frames = len(audio_bytes) // 2 // (AUDIO_SAMPLE_RATE // 6.86) // 7
|
| 151 |
|
| 152 |
status_msg = f"Generated {duration:.2f}s of emotional speech!"
|
| 153 |
-
|
| 154 |
return wav_buffer, status_msg
|
| 155 |
|
| 156 |
except Exception as e:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
import io
|
| 4 |
+
import wave
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
+
from snac import SNAC
|
| 8 |
|
| 9 |
# Mock spaces module for local testing
|
| 10 |
try:
|
|
|
|
| 16 |
return func
|
| 17 |
spaces = SpacesMock()
|
| 18 |
|
| 19 |
+
# Constants
|
| 20 |
+
CODE_START_TOKEN_ID = 128257
|
| 21 |
+
CODE_END_TOKEN_ID = 128258
|
| 22 |
+
CODE_TOKEN_OFFSET = 128266
|
| 23 |
+
SNAC_MIN_ID = 128266
|
| 24 |
+
SNAC_MAX_ID = 156937
|
| 25 |
+
SOH_ID = 128259
|
| 26 |
+
EOH_ID = 128260
|
| 27 |
+
SOA_ID = 128261
|
| 28 |
+
BOS_ID = 128000
|
| 29 |
+
TEXT_EOT_ID = 128009
|
| 30 |
+
AUDIO_SAMPLE_RATE = 24000
|
| 31 |
|
| 32 |
# Preset characters (2 realistic + 2 creative)
|
| 33 |
PRESET_CHARACTERS = {
|
|
|
|
| 49 |
}
|
| 50 |
}
|
| 51 |
|
| 52 |
+
# Global model variables
|
| 53 |
model = None
|
| 54 |
+
tokenizer = None
|
| 55 |
+
snac_model = None
|
|
|
|
| 56 |
models_loaded = False
|
| 57 |
|
| 58 |
+
def build_prompt(tokenizer, description: str, text: str) -> str:
|
| 59 |
+
"""Build formatted prompt for Maya1."""
|
| 60 |
+
soh_token = tokenizer.decode([SOH_ID])
|
| 61 |
+
eoh_token = tokenizer.decode([EOH_ID])
|
| 62 |
+
soa_token = tokenizer.decode([SOA_ID])
|
| 63 |
+
sos_token = tokenizer.decode([CODE_START_TOKEN_ID])
|
| 64 |
+
eot_token = tokenizer.decode([TEXT_EOT_ID])
|
| 65 |
+
bos_token = tokenizer.bos_token
|
| 66 |
|
| 67 |
+
formatted_text = f'<description="{description}"> {text}'
|
| 68 |
+
prompt = (
|
| 69 |
+
soh_token + bos_token + formatted_text + eot_token +
|
| 70 |
+
eoh_token + soa_token + sos_token
|
| 71 |
+
)
|
| 72 |
+
return prompt
|
| 73 |
+
|
| 74 |
+
def unpack_snac_from_7(snac_tokens: list) -> list:
|
| 75 |
+
"""Unpack 7-token SNAC frames to 3 hierarchical levels."""
|
| 76 |
+
if snac_tokens and snac_tokens[-1] == CODE_END_TOKEN_ID:
|
| 77 |
+
snac_tokens = snac_tokens[:-1]
|
| 78 |
|
| 79 |
+
frames = len(snac_tokens) // 7
|
| 80 |
+
snac_tokens = snac_tokens[:frames * 7]
|
| 81 |
|
| 82 |
+
if frames == 0:
|
| 83 |
+
return [[], [], []]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
l1, l2, l3 = [], [], []
|
|
|
|
| 86 |
|
| 87 |
+
for i in range(frames):
|
| 88 |
+
slots = snac_tokens[i*7:(i+1)*7]
|
| 89 |
+
l1.append((slots[0] - CODE_TOKEN_OFFSET) % 4096)
|
| 90 |
+
l2.extend([
|
| 91 |
+
(slots[1] - CODE_TOKEN_OFFSET) % 4096,
|
| 92 |
+
(slots[4] - CODE_TOKEN_OFFSET) % 4096,
|
| 93 |
+
])
|
| 94 |
+
l3.extend([
|
| 95 |
+
(slots[2] - CODE_TOKEN_OFFSET) % 4096,
|
| 96 |
+
(slots[3] - CODE_TOKEN_OFFSET) % 4096,
|
| 97 |
+
(slots[5] - CODE_TOKEN_OFFSET) % 4096,
|
| 98 |
+
(slots[6] - CODE_TOKEN_OFFSET) % 4096,
|
| 99 |
+
])
|
| 100 |
|
| 101 |
+
return [l1, l2, l3]
|
| 102 |
+
|
| 103 |
+
def load_models():
|
| 104 |
+
"""Load Maya1 Transformers model (runs once)."""
|
| 105 |
+
global model, tokenizer, snac_model, models_loaded
|
| 106 |
|
| 107 |
+
if models_loaded:
|
| 108 |
+
return
|
| 109 |
+
|
| 110 |
+
print("Loading Maya1 model with Transformers...")
|
| 111 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 112 |
+
"maya-research/maya1",
|
| 113 |
+
torch_dtype=torch.bfloat16,
|
| 114 |
+
device_map="auto",
|
| 115 |
+
trust_remote_code=True
|
| 116 |
)
|
| 117 |
+
tokenizer = AutoTokenizer.from_pretrained("maya-research/maya1", trust_remote_code=True)
|
| 118 |
|
| 119 |
+
print("Loading SNAC decoder...")
|
| 120 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval()
|
| 121 |
+
if torch.cuda.is_available():
|
| 122 |
+
snac_model = snac_model.to("cuda")
|
| 123 |
|
| 124 |
models_loaded = True
|
| 125 |
print("Models loaded successfully!")
|
|
|
|
| 133 |
|
| 134 |
@spaces.GPU
|
| 135 |
def generate_speech(preset_name, description, text, temperature, max_tokens):
|
| 136 |
+
"""Generate emotional speech from description and text using Transformers."""
|
| 137 |
try:
|
| 138 |
# Load models if not already loaded
|
| 139 |
load_models()
|
|
|
|
| 148 |
|
| 149 |
print(f"Generating with temperature={temperature}, max_tokens={max_tokens}...")
|
| 150 |
|
| 151 |
+
# Build prompt
|
| 152 |
+
prompt = build_prompt(tokenizer, description, text)
|
| 153 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 154 |
+
|
| 155 |
+
if torch.cuda.is_available():
|
| 156 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 157 |
+
|
| 158 |
+
# Generate tokens
|
| 159 |
+
with torch.inference_mode():
|
| 160 |
+
outputs = model.generate(
|
| 161 |
+
**inputs,
|
| 162 |
+
max_new_tokens=max_tokens,
|
| 163 |
+
min_new_tokens=28,
|
| 164 |
+
temperature=temperature,
|
| 165 |
+
top_p=0.9,
|
| 166 |
repetition_penalty=1.1,
|
| 167 |
+
do_sample=True,
|
| 168 |
+
eos_token_id=CODE_END_TOKEN_ID,
|
| 169 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 170 |
)
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
# Extract SNAC tokens
|
| 173 |
+
generated_ids = outputs[0, inputs['input_ids'].shape[1]:].tolist()
|
| 174 |
+
|
| 175 |
+
# Find EOS and extract SNAC codes
|
| 176 |
+
eos_idx = generated_ids.index(CODE_END_TOKEN_ID) if CODE_END_TOKEN_ID in generated_ids else len(generated_ids)
|
| 177 |
+
snac_tokens = [t for t in generated_ids[:eos_idx] if SNAC_MIN_ID <= t <= SNAC_MAX_ID]
|
| 178 |
+
|
| 179 |
+
if len(snac_tokens) < 7:
|
| 180 |
+
return None, "Error: Not enough tokens generated. Try different text or increase max_tokens."
|
| 181 |
+
|
| 182 |
+
# Unpack and decode
|
| 183 |
+
levels = unpack_snac_from_7(snac_tokens)
|
| 184 |
+
frames = len(levels[0])
|
| 185 |
|
| 186 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 187 |
+
codes_tensor = [torch.tensor(level, dtype=torch.long, device=device).unsqueeze(0) for level in levels]
|
| 188 |
+
|
| 189 |
+
with torch.inference_mode():
|
| 190 |
+
z_q = snac_model.quantizer.from_codes(codes_tensor)
|
| 191 |
+
audio = snac_model.decoder(z_q)[0, 0].cpu().numpy()
|
| 192 |
+
|
| 193 |
+
# Trim warmup
|
| 194 |
+
if len(audio) > 2048:
|
| 195 |
+
audio = audio[2048:]
|
| 196 |
+
|
| 197 |
+
# Convert to WAV
|
| 198 |
+
audio_int16 = (audio * 32767).astype(np.int16)
|
| 199 |
wav_buffer = io.BytesIO()
|
| 200 |
with wave.open(wav_buffer, 'wb') as wav_file:
|
| 201 |
wav_file.setnchannels(1)
|
| 202 |
wav_file.setsampwidth(2)
|
| 203 |
wav_file.setframerate(AUDIO_SAMPLE_RATE)
|
| 204 |
+
wav_file.writeframes(audio_int16.tobytes())
|
| 205 |
|
| 206 |
wav_buffer.seek(0)
|
| 207 |
+
duration = len(audio) / AUDIO_SAMPLE_RATE
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
status_msg = f"Generated {duration:.2f}s of emotional speech!"
|
|
|
|
| 210 |
return wav_buffer, status_msg
|
| 211 |
|
| 212 |
except Exception as e:
|
requirements.txt
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
torch>=2.5.0
|
| 2 |
transformers>=4.57.0
|
| 3 |
gradio>=5.0.0
|
| 4 |
-
vllm>=0.11.0
|
| 5 |
snac>=1.2.1
|
| 6 |
soundfile>=0.13.0
|
| 7 |
numpy>=2.1.0
|
| 8 |
accelerate>=1.10.0
|
| 9 |
-
xformers>=0.0.32
|
| 10 |
|
|
|
|
| 1 |
torch>=2.5.0
|
| 2 |
transformers>=4.57.0
|
| 3 |
gradio>=5.0.0
|
|
|
|
| 4 |
snac>=1.2.1
|
| 5 |
soundfile>=0.13.0
|
| 6 |
numpy>=2.1.0
|
| 7 |
accelerate>=1.10.0
|
|
|
|
| 8 |
|