import torch import spaces import gradio as gr import random import numpy as np from diffusers import ZImagePipeline # Load the pipeline once at startup print("Loading Z-Image-Turbo pipeline...") pipe = ZImagePipeline.from_pretrained( "Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16, low_cpu_mem_usage=False, ) pipe_no_lora = ZImagePipeline.from_pretrained( "Tongyi-MAI/Z-Image-Turbo", torch_dtype=torch.bfloat16, low_cpu_mem_usage=False, ) pipe.load_lora_weights("Shakker-Labs/AWPortrait-Z", weight_name="AWPortrait-Z.safetensors", adapter_name="lora") pipe.set_adapters(["lora",], adapter_weights=[1.]) pipe.fuse_lora(adapter_names=["lora"], lora_scale=.9) pipe.unload_lora_weights() pipe.to("cuda") pipe_no_lora.to("cuda") # ======== AoTI compilation + FA3 ======== pipe.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"] spaces.aoti_blocks_load(pipe.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3") pipe_no_lora.transformer.layers._repeated_blocks = ["ZImageTransformerBlock"] spaces.aoti_blocks_load(pipe_no_lora.transformer.layers, "zerogpu-aoti/Z-Image", variant="fa3") MAX_SEED = np.iinfo(np.int32).max print("Pipeline loaded!") @spaces.GPU def generate_image(prompt, height, width, num_inference_steps, seed=42, randomize_seed=True, progress=gr.Progress(track_tqdm=True)): """Generate an image from the given prompt.""" if randomize_seed: seed = random.randint(0, MAX_SEED) image = pipe( prompt=prompt, height=int(height), width=int(width), num_inference_steps=int(num_inference_steps), guidance_scale=0.0, # Guidance should be 0 for Turbo models generator = torch.Generator(device="cuda").manual_seed(seed) ).images[0] image_no_lora = pipe_no_lora( prompt=prompt, height=int(height), width=int(width), num_inference_steps=int(num_inference_steps), guidance_scale=0.0, # Guidance should be 0 for Turbo models generator = torch.Generator(device="cuda").manual_seed(seed) ).images[0] return (image_no_lora,image), seed # Example prompts examples = [ ["A dramatic close-up high-fashion portrait with avant-garde futuristic styling, metallic accents, sculptural makeup, glowing rim light, hyperreal detail, cool-toned color palette, glossy finish, fashion campaign quality."], ] css = """ #col-container { max-width: 950px; margin: 0 auto; } .dark .progress-text { color: white !important; } #examples { max-width: 950px; margin: 0 auto; } .dark #examples button, .dark #examples .example, .dark #examples span { color: white !important; } """ # Build the Gradio interface with gr.Blocks() as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """ # Z-Image-Turbo Portrait✨ Generate high-quality portrait images with [Tongyi-MAI/Z-Image-Turbo](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo) using [portrait-beauty LoRA by @dynamicwangs and Shakker Labs](https://huggingface.co/Shakker-Labs/AWPortrait-Z), for fast inference with enhanced details. This turbo model generates images in just 8 inference steps! """ ) with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox( label="Prompt", placeholder="Enter your image description...", max_lines=4, ) generate_btn = gr.Button("Generate", variant="primary") with gr.Accordion("Advanced Settings", open=False): with gr.Row(): height = gr.Slider( minimum=512, maximum=2048, value=1024, step=64, label="Height", ) width = gr.Slider( minimum=512, maximum=2048, value=1024, step=64, label="Width", ) with gr.Row(): num_inference_steps = gr.Slider( minimum=1, maximum=20, value=9, step=1, label="Inference Steps", info="9 steps results in 8 DiT forwards", ) with gr.Row(): seed = gr.Number( label="Seed", value=42, precision=0, ) randomize_seed = gr.Checkbox( label="Randomize Seed", value=True, ) with gr.Column(scale=1): output_image = gr.ImageSlider( label="Output (Left-with the LoRA, Right-without)", type="pil", ) gr.Examples( examples=examples, inputs=[prompt], cache_examples=False, elem_id="examples", ) # Connect the generate button generate_btn.click( fn=generate_image, inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed], outputs=[output_image, seed], ) # Also allow generating by pressing Enter in the prompt box prompt.submit( fn=generate_image, inputs=[prompt, height, width, num_inference_steps, seed, randomize_seed], outputs=[output_image, seed], ) if __name__ == "__main__": demo.launch(mcp_server=True, theme=gr.themes.Citrus(), css=css)