####################################################################################### # # MIT License # # Copyright (c) [2025] [leonelhs@gmail.com] # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ####################################################################################### # # # This file implements an API endpoint GFPGAN system. # It provides functionality to enhances an image by upscaling it 4 times its original size . # # # Source code is based on or inspired by several projects. # For more details and proper attribution, please refer to the following resources: # # - [GFPGAN] - [https://github.com/TencentARC/GFPGAN] import gradio as gr import numpy as np from facexlib.utils.face_restoration_helper import FaceRestoreHelper from tiny_esrgan import TinyESRGAN from tiny_gfpgan import TinyGFPGAN face_enhancer = TinyGFPGAN() background_enhancer = TinyESRGAN() face_helper = FaceRestoreHelper(upscale_factor=4, use_parse=True, model_rootpath='gfpgan/weights') def predict(img): img = np.asarray(img) face_helper.clean_all() face_helper.read_image(img) # get face landmarks for each face face_helper.get_face_landmarks_5(eye_dist_threshold=5) face_helper.align_warp_face() face_helper.restored_faces = face_enhancer.enhance(face_helper.cropped_faces) bg = background_enhancer.enhance(img) face_helper.get_inverse_affine(None) return face_helper.paste_faces_to_input_image(upsample_img=bg) app = gr.Interface( predict, [ gr.Image(type="pil", label="Image input"), ], [ gr.Image(type="numpy", label="Image face enhanced") ], title="Image enhancer", description="GFPGAN") app.launch(share=False, debug=True, show_error=True, mcp_server=True) app.queue()