import gradio as gr from gradio_client import Client, handle_file import spaces import os os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1' os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True" os.environ["ATTN_BACKEND"] = "flash_attn_3" os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json') os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1' from datetime import datetime import shutil import cv2 from typing import * import torch import numpy as np from PIL import Image import base64 import io from trellis2.modules.sparse import SparseTensor from trellis2.pipelines import Trellis2ImageTo3DPipeline from trellis2.renderers import EnvMap from trellis2.utils import render_utils import o_voxel MAX_SEED = np.iinfo(np.int32).max TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') MODES = [ {"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"}, {"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"}, {"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"}, {"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"}, {"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"}, {"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"}, ] STEPS = 8 DEFAULT_MODE = 3 DEFAULT_STEP = 3 css = """ /* Overwrite Gradio Default Style */ .stepper-wrapper { padding: 0; } .stepper-container { padding: 0; align-items: center; } .step-button { flex-direction: row; } .step-connector { transform: none; } .step-number { width: 16px; height: 16px; } .step-label { position: relative; bottom: 0; } .wrap.center.full { inset: 0; height: 100%; } .wrap.center.full.translucent { background: var(--block-background-fill); } .meta-text-center { display: block !important; position: absolute !important; top: unset !important; bottom: 0 !important; right: 0 !important; transform: unset !important; } /* Previewer */ .previewer-container { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; width: 100%; height: 722px; margin: 0 auto; padding: 20px; display: flex; flex-direction: column; align-items: center; justify-content: center; } /* Row 1: Display Modes */ .previewer-container .mode-row { width: 100%; display: flex; gap: 8px; justify-content: center; margin-bottom: 20px; flex-wrap: wrap; } .previewer-container .mode-btn { width: 24px; height: 24px; border-radius: 50%; cursor: pointer; opacity: 0.5; transition: all 0.2s; border: 2px solid #ddd; object-fit: cover; } .previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); } .previewer-container .mode-btn.active { opacity: 1; border-color: var(--color-accent); transform: scale(1.1); } /* Row 2: Display Image */ .previewer-container .display-row { margin-bottom: 20px; min-height: 400px; width: 100%; flex-grow: 1; display: flex; justify-content: center; align-items: center; } .previewer-container .previewer-main-image { max-width: 100%; max-height: 100%; flex-grow: 1; object-fit: contain; display: none; } .previewer-container .previewer-main-image.visible { display: block; } /* Row 3: Custom HTML Slider */ .previewer-container .slider-row { width: 100%; display: flex; flex-direction: column; align-items: center; gap: 10px; padding: 0 10px; } .previewer-container input[type=range] { -webkit-appearance: none; width: 100%; max-width: 400px; background: transparent; } .previewer-container input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 8px; cursor: pointer; background: #ddd; border-radius: 5px; } .previewer-container input[type=range]::-webkit-slider-thumb { height: 20px; width: 20px; border-radius: 50%; background: var(--color-accent); cursor: pointer; -webkit-appearance: none; margin-top: -6px; box-shadow: 0 2px 5px rgba(0,0,0,0.2); transition: transform 0.1s; } .previewer-container input[type=range]::-webkit-slider-thumb:hover { transform: scale(1.2); } """ head = """ """ empty_html = f"""
""" def image_to_base64(image): buffered = io.BytesIO() image = image.convert("RGB") image.save(buffered, format="jpeg", quality=85) img_str = base64.b64encode(buffered.getvalue()).decode() return f"data:image/jpeg;base64,{img_str}" def start_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) os.makedirs(user_dir, exist_ok=True) def end_session(req: gr.Request): user_dir = os.path.join(TMP_DIR, str(req.session_hash)) shutil.rmtree(user_dir) def remove_background(input: Image.Image, user_dir: str) -> Image.Image: input = input.convert('RGB') os.makedirs(user_dir, exist_ok=True) input.save(os.path.join(user_dir, 'input.png')) output = rmbg_client.predict(handle_file(os.path.join(user_dir, 'input.png')), api_name="/image")[0][0] output = Image.open(output) return output def preprocess_image(input: Image.Image, req: gr.Request,) -> Image.Image: """ Preprocess the input image. """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) # if has alpha channel, use it directly; otherwise, remove background has_alpha = False if input.mode == 'RGBA': alpha = np.array(input)[:, :, 3] if not np.all(alpha == 255): has_alpha = True max_size = max(input.size) scale = min(1, 1024 / max_size) if scale < 1: input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS) if has_alpha: output = input else: output = remove_background(input, user_dir) output_np = np.array(output) alpha = output_np[:, :, 3] bbox = np.argwhere(alpha > 0.8 * 255) bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0]) center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2 size = max(bbox[2] - bbox[0], bbox[3] - bbox[1]) size = int(size * 1) bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2 output = output.crop(bbox) # type: ignore output = np.array(output).astype(np.float32) / 255 output = output[:, :, :3] * output[:, :, 3:4] output = Image.fromarray((output * 255).astype(np.uint8)) return output def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict: shape_slat, tex_slat, res = latents return { 'shape_slat_feats': shape_slat.feats.cpu().numpy(), 'tex_slat_feats': tex_slat.feats.cpu().numpy(), 'coords': shape_slat.coords.cpu().numpy(), 'res': res, } def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]: shape_slat = SparseTensor( feats=torch.from_numpy(state['shape_slat_feats']).cuda(), coords=torch.from_numpy(state['coords']).cuda(), ) tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda()) return shape_slat, tex_slat, state['res'] def get_seed(randomize_seed: bool, seed: int) -> int: """ Get the random seed. """ return np.random.randint(0, MAX_SEED) if randomize_seed else seed @spaces.GPU(duration=120) def image_to_3d( image: Image.Image, seed: int, resolution: str, ss_guidance_strength: float, ss_guidance_rescale: float, ss_sampling_steps: int, ss_rescale_t: float, shape_slat_guidance_strength: float, shape_slat_guidance_rescale: float, shape_slat_sampling_steps: int, shape_slat_rescale_t: float, tex_slat_guidance_strength: float, tex_slat_guidance_rescale: float, tex_slat_sampling_steps: int, tex_slat_rescale_t: float, req: gr.Request, progress=gr.Progress(track_tqdm=True), ) -> str: # --- Sampling --- outputs, latents = pipeline.run( image, seed=seed, preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "guidance_strength": ss_guidance_strength, "guidance_rescale": ss_guidance_rescale, "rescale_t": ss_rescale_t, }, shape_slat_sampler_params={ "steps": shape_slat_sampling_steps, "guidance_strength": shape_slat_guidance_strength, "guidance_rescale": shape_slat_guidance_rescale, "rescale_t": shape_slat_rescale_t, }, tex_slat_sampler_params={ "steps": tex_slat_sampling_steps, "guidance_strength": tex_slat_guidance_strength, "guidance_rescale": tex_slat_guidance_rescale, "rescale_t": tex_slat_rescale_t, }, pipeline_type={ "512": "512", "1024": "1024_cascade", "1536": "1536_cascade", }[resolution], return_latent=True, ) mesh = outputs[0] mesh.simplify(16777216) # nvdiffrast limit images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap) state = pack_state(latents) torch.cuda.empty_cache() # --- HTML Construction --- # The Stack of 48 Images images_html = "" for m_idx, mode in enumerate(MODES): for s_idx in range(STEPS): # ID Naming Convention: view-m{mode}-s{step} unique_id = f"view-m{m_idx}-s{s_idx}" # Logic: Only Mode 0, Step 0 is visible initially is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP) vis_class = "visible" if is_visible else "" # Image Source img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx])) # Render the Tag images_html += f""" """ # Button Row HTML btns_html = "" for idx, mode in enumerate(MODES): active_class = "active" if idx == DEFAULT_MODE else "" # Note: onclick calls the JS function defined in Head btns_html += f""" """ # Assemble the full component full_html = f"""
{images_html}
{btns_html}
""" return state, full_html @spaces.GPU(duration=60) def extract_glb( state: dict, decimation_target: int, texture_size: int, req: gr.Request, progress=gr.Progress(track_tqdm=True), ) -> Tuple[str, str]: """ Extract a GLB file from the 3D model. Args: state (dict): The state of the generated 3D model. decimation_target (int): The target face count for decimation. texture_size (int): The texture resolution. Returns: str: The path to the extracted GLB file. """ user_dir = os.path.join(TMP_DIR, str(req.session_hash)) shape_slat, tex_slat, res = unpack_state(state) mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0] mesh.simplify(16777216) glb = o_voxel.postprocess.to_glb( vertices=mesh.vertices, faces=mesh.faces, attr_volume=mesh.attrs, coords=mesh.coords, attr_layout=pipeline.pbr_attr_layout, grid_size=res, aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]], decimation_target=decimation_target, texture_size=texture_size, remesh=True, remesh_band=1, use_tqdm=True, ) now = datetime.now() timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}" os.makedirs(user_dir, exist_ok=True) glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb') glb.export(glb_path) torch.cuda.empty_cache() return glb_path, glb_path with gr.Blocks(delete_cache=(600, 600)) as demo: gr.Markdown(""" ## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/trellis.2) * Upload an image (preferably with an alpha-masked foreground object) and click Generate to create a 3D asset. * If you're satisfied with the result, click Extract GLB to export and download the generated GLB file. """) with gr.Row(): with gr.Column(scale=1, min_width=360): image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400) resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024") seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) decimation_target = gr.Slider(100000, 1000000, label="Decimation Target", value=500000, step=10000) texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024) generate_btn = gr.Button("Generate") with gr.Accordion(label="Advanced Settings", open=False): gr.Markdown("Stage 1: Sparse Structure Generation") with gr.Row(): ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01) ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1) gr.Markdown("Stage 2: Shape Generation") with gr.Row(): shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01) shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) gr.Markdown("Stage 3: Material Generation") with gr.Row(): tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1) tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01) tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1) with gr.Column(scale=10): with gr.Walkthrough(selected=0) as walkthrough: with gr.Step("Preview", id=0): preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True, js_on_load="modify_html_container()") extract_btn = gr.Button("Extract GLB") with gr.Step("Extract", id=1): glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0)) download_btn = gr.DownloadButton(label="Download GLB") with gr.Column(scale=1, min_width=172): examples = gr.Examples( examples=[ f'assets/example_image/{image}' for image in os.listdir("assets/example_image") ], inputs=[image_prompt], fn=preprocess_image, outputs=[image_prompt], run_on_click=True, examples_per_page=18, ) output_buf = gr.State() # Handlers demo.load(start_session) demo.unload(end_session) image_prompt.upload( preprocess_image, inputs=[image_prompt], outputs=[image_prompt], ) generate_btn.click( get_seed, inputs=[randomize_seed, seed], outputs=[seed], ).then( lambda: gr.Walkthrough(selected=0), outputs=walkthrough ).then( image_to_3d, inputs=[ image_prompt, seed, resolution, ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t, shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t, tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t, ], outputs=[output_buf, preview_output], ) extract_btn.click( lambda: gr.Walkthrough(selected=1), outputs=walkthrough ).then( extract_glb, inputs=[output_buf, decimation_target, texture_size], outputs=[glb_output, download_btn], ) # Launch the Gradio app if __name__ == "__main__": os.makedirs(TMP_DIR, exist_ok=True) # Construct ui components btn_img_base64_strs = {} for i in range(len(MODES)): icon = Image.open(MODES[i]['icon']) MODES[i]['icon_base64'] = image_to_base64(icon) rmbg_client = Client("briaai/BRIA-RMBG-2.0") pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B') pipeline.rembg_model = None pipeline.low_vram = False pipeline.cuda() envmap = { 'forest': EnvMap(torch.tensor( cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda' )), 'sunset': EnvMap(torch.tensor( cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda' )), 'courtyard': EnvMap(torch.tensor( cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB), dtype=torch.float32, device='cuda' )), } demo.launch(css=css, head=head)