import gradio as gr
from gradio_client import Client, handle_file
import spaces
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["ATTN_BACKEND"] = "flash_attn_3"
os.environ["FLEX_GEMM_AUTOTUNE_CACHE_PATH"] = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'autotune_cache.json')
os.environ["FLEX_GEMM_AUTOTUNER_VERBOSE"] = '1'
from datetime import datetime
import shutil
import cv2
from typing import *
import torch
import numpy as np
from PIL import Image
import base64
import io
from trellis2.modules.sparse import SparseTensor
from trellis2.pipelines import Trellis2ImageTo3DPipeline
from trellis2.renderers import EnvMap
from trellis2.utils import render_utils
import o_voxel
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
MODES = [
{"name": "Normal", "icon": "assets/app/normal.png", "render_key": "normal"},
{"name": "Clay render", "icon": "assets/app/clay.png", "render_key": "clay"},
{"name": "Base color", "icon": "assets/app/basecolor.png", "render_key": "base_color"},
{"name": "HDRI forest", "icon": "assets/app/hdri_forest.png", "render_key": "shaded_forest"},
{"name": "HDRI sunset", "icon": "assets/app/hdri_sunset.png", "render_key": "shaded_sunset"},
{"name": "HDRI courtyard", "icon": "assets/app/hdri_courtyard.png", "render_key": "shaded_courtyard"},
]
STEPS = 8
DEFAULT_MODE = 3
DEFAULT_STEP = 3
css = """
/* Overwrite Gradio Default Style */
.stepper-wrapper {
padding: 0;
}
.stepper-container {
padding: 0;
align-items: center;
}
.step-button {
flex-direction: row;
}
.step-connector {
transform: none;
}
.step-number {
width: 16px;
height: 16px;
}
.step-label {
position: relative;
bottom: 0;
}
.wrap.center.full {
inset: 0;
height: 100%;
}
.wrap.center.full.translucent {
background: var(--block-background-fill);
}
.meta-text-center {
display: block !important;
position: absolute !important;
top: unset !important;
bottom: 0 !important;
right: 0 !important;
transform: unset !important;
}
/* Previewer */
.previewer-container {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
width: 100%;
height: 722px;
margin: 0 auto;
padding: 20px;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
/* Row 1: Display Modes */
.previewer-container .mode-row {
width: 100%;
display: flex;
gap: 8px;
justify-content: center;
margin-bottom: 20px;
flex-wrap: wrap;
}
.previewer-container .mode-btn {
width: 24px;
height: 24px;
border-radius: 50%;
cursor: pointer;
opacity: 0.5;
transition: all 0.2s;
border: 2px solid #ddd;
object-fit: cover;
}
.previewer-container .mode-btn:hover { opacity: 0.9; transform: scale(1.1); }
.previewer-container .mode-btn.active {
opacity: 1;
border-color: var(--color-accent);
transform: scale(1.1);
}
/* Row 2: Display Image */
.previewer-container .display-row {
margin-bottom: 20px;
min-height: 400px;
width: 100%;
flex-grow: 1;
display: flex;
justify-content: center;
align-items: center;
}
.previewer-container .previewer-main-image {
max-width: 100%;
max-height: 100%;
flex-grow: 1;
object-fit: contain;
display: none;
}
.previewer-container .previewer-main-image.visible {
display: block;
}
/* Row 3: Custom HTML Slider */
.previewer-container .slider-row {
width: 100%;
display: flex;
flex-direction: column;
align-items: center;
gap: 10px;
padding: 0 10px;
}
.previewer-container input[type=range] {
-webkit-appearance: none;
width: 100%;
max-width: 400px;
background: transparent;
}
.previewer-container input[type=range]::-webkit-slider-runnable-track {
width: 100%;
height: 8px;
cursor: pointer;
background: #ddd;
border-radius: 5px;
}
.previewer-container input[type=range]::-webkit-slider-thumb {
height: 20px;
width: 20px;
border-radius: 50%;
background: var(--color-accent);
cursor: pointer;
-webkit-appearance: none;
margin-top: -6px;
box-shadow: 0 2px 5px rgba(0,0,0,0.2);
transition: transform 0.1s;
}
.previewer-container input[type=range]::-webkit-slider-thumb:hover {
transform: scale(1.2);
}
"""
head = """
"""
empty_html = f"""
"""
def image_to_base64(image):
buffered = io.BytesIO()
image = image.convert("RGB")
image.save(buffered, format="jpeg", quality=85)
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/jpeg;base64,{img_str}"
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def remove_background(input: Image.Image, user_dir: str) -> Image.Image:
input = input.convert('RGB')
os.makedirs(user_dir, exist_ok=True)
input.save(os.path.join(user_dir, 'input.png'))
output = rmbg_client.predict(handle_file(os.path.join(user_dir, 'input.png')), api_name="/image")[0][0]
output = Image.open(output)
return output
def preprocess_image(input: Image.Image, req: gr.Request,) -> Image.Image:
"""
Preprocess the input image.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# if has alpha channel, use it directly; otherwise, remove background
has_alpha = False
if input.mode == 'RGBA':
alpha = np.array(input)[:, :, 3]
if not np.all(alpha == 255):
has_alpha = True
max_size = max(input.size)
scale = min(1, 1024 / max_size)
if scale < 1:
input = input.resize((int(input.width * scale), int(input.height * scale)), Image.Resampling.LANCZOS)
if has_alpha:
output = input
else:
output = remove_background(input, user_dir)
output_np = np.array(output)
alpha = output_np[:, :, 3]
bbox = np.argwhere(alpha > 0.8 * 255)
bbox = np.min(bbox[:, 1]), np.min(bbox[:, 0]), np.max(bbox[:, 1]), np.max(bbox[:, 0])
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
size = int(size * 1)
bbox = center[0] - size // 2, center[1] - size // 2, center[0] + size // 2, center[1] + size // 2
output = output.crop(bbox) # type: ignore
output = np.array(output).astype(np.float32) / 255
output = output[:, :, :3] * output[:, :, 3:4]
output = Image.fromarray((output * 255).astype(np.uint8))
return output
def pack_state(latents: Tuple[SparseTensor, SparseTensor, int]) -> dict:
shape_slat, tex_slat, res = latents
return {
'shape_slat_feats': shape_slat.feats.cpu().numpy(),
'tex_slat_feats': tex_slat.feats.cpu().numpy(),
'coords': shape_slat.coords.cpu().numpy(),
'res': res,
}
def unpack_state(state: dict) -> Tuple[SparseTensor, SparseTensor, int]:
shape_slat = SparseTensor(
feats=torch.from_numpy(state['shape_slat_feats']).cuda(),
coords=torch.from_numpy(state['coords']).cuda(),
)
tex_slat = shape_slat.replace(torch.from_numpy(state['tex_slat_feats']).cuda())
return shape_slat, tex_slat, state['res']
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU(duration=120)
def image_to_3d(
image: Image.Image,
seed: int,
resolution: str,
ss_guidance_strength: float,
ss_guidance_rescale: float,
ss_sampling_steps: int,
ss_rescale_t: float,
shape_slat_guidance_strength: float,
shape_slat_guidance_rescale: float,
shape_slat_sampling_steps: int,
shape_slat_rescale_t: float,
tex_slat_guidance_strength: float,
tex_slat_guidance_rescale: float,
tex_slat_sampling_steps: int,
tex_slat_rescale_t: float,
req: gr.Request,
progress=gr.Progress(track_tqdm=True),
) -> str:
# --- Sampling ---
outputs, latents = pipeline.run(
image,
seed=seed,
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"guidance_strength": ss_guidance_strength,
"guidance_rescale": ss_guidance_rescale,
"rescale_t": ss_rescale_t,
},
shape_slat_sampler_params={
"steps": shape_slat_sampling_steps,
"guidance_strength": shape_slat_guidance_strength,
"guidance_rescale": shape_slat_guidance_rescale,
"rescale_t": shape_slat_rescale_t,
},
tex_slat_sampler_params={
"steps": tex_slat_sampling_steps,
"guidance_strength": tex_slat_guidance_strength,
"guidance_rescale": tex_slat_guidance_rescale,
"rescale_t": tex_slat_rescale_t,
},
pipeline_type={
"512": "512",
"1024": "1024_cascade",
"1536": "1536_cascade",
}[resolution],
return_latent=True,
)
mesh = outputs[0]
mesh.simplify(16777216) # nvdiffrast limit
images = render_utils.render_snapshot(mesh, resolution=1024, r=2, fov=36, nviews=STEPS, envmap=envmap)
state = pack_state(latents)
torch.cuda.empty_cache()
# --- HTML Construction ---
# The Stack of 48 Images
images_html = ""
for m_idx, mode in enumerate(MODES):
for s_idx in range(STEPS):
# ID Naming Convention: view-m{mode}-s{step}
unique_id = f"view-m{m_idx}-s{s_idx}"
# Logic: Only Mode 0, Step 0 is visible initially
is_visible = (m_idx == DEFAULT_MODE and s_idx == DEFAULT_STEP)
vis_class = "visible" if is_visible else ""
# Image Source
img_base64 = image_to_base64(Image.fromarray(images[mode['render_key']][s_idx]))
# Render the Tag
images_html += f"""
"""
# Button Row HTML
btns_html = ""
for idx, mode in enumerate(MODES):
active_class = "active" if idx == DEFAULT_MODE else ""
# Note: onclick calls the JS function defined in Head
btns_html += f"""
"""
# Assemble the full component
full_html = f"""
{images_html}
{btns_html}
"""
return state, full_html
@spaces.GPU(duration=60)
def extract_glb(
state: dict,
decimation_target: int,
texture_size: int,
req: gr.Request,
progress=gr.Progress(track_tqdm=True),
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
decimation_target (int): The target face count for decimation.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shape_slat, tex_slat, res = unpack_state(state)
mesh = pipeline.decode_latent(shape_slat, tex_slat, res)[0]
mesh.simplify(16777216)
glb = o_voxel.postprocess.to_glb(
vertices=mesh.vertices,
faces=mesh.faces,
attr_volume=mesh.attrs,
coords=mesh.coords,
attr_layout=pipeline.pbr_attr_layout,
grid_size=res,
aabb=[[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
decimation_target=decimation_target,
texture_size=texture_size,
remesh=True,
remesh_band=1,
use_tqdm=True,
)
now = datetime.now()
timestamp = now.strftime("%Y-%m-%dT%H%M%S") + f".{now.microsecond // 1000:03d}"
os.makedirs(user_dir, exist_ok=True)
glb_path = os.path.join(user_dir, f'sample_{timestamp}.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS.2](https://microsoft.github.io/trellis.2)
* Upload an image (preferably with an alpha-masked foreground object) and click Generate to create a 3D asset.
* If you're satisfied with the result, click Extract GLB to export and download the generated GLB file.
""")
with gr.Row():
with gr.Column(scale=1, min_width=360):
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=400)
resolution = gr.Radio(["512", "1024", "1536"], label="Resolution", value="1024")
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
decimation_target = gr.Slider(100000, 1000000, label="Decimation Target", value=500000, step=10000)
texture_size = gr.Slider(1024, 4096, label="Texture Size", value=2048, step=1024)
generate_btn = gr.Button("Generate")
with gr.Accordion(label="Advanced Settings", open=False):
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.7, step=0.01)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
ss_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=5.0, step=0.1)
gr.Markdown("Stage 2: Shape Generation")
with gr.Row():
shape_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
shape_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.5, step=0.01)
shape_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
shape_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
gr.Markdown("Stage 3: Material Generation")
with gr.Row():
tex_slat_guidance_strength = gr.Slider(1.0, 10.0, label="Guidance Strength", value=1.0, step=0.1)
tex_slat_guidance_rescale = gr.Slider(0.0, 1.0, label="Guidance Rescale", value=0.0, step=0.01)
tex_slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
tex_slat_rescale_t = gr.Slider(1.0, 6.0, label="Rescale T", value=3.0, step=0.1)
with gr.Column(scale=10):
with gr.Walkthrough(selected=0) as walkthrough:
with gr.Step("Preview", id=0):
preview_output = gr.HTML(empty_html, label="3D Asset Preview", show_label=True, container=True, js_on_load="modify_html_container()")
extract_btn = gr.Button("Extract GLB")
with gr.Step("Extract", id=1):
glb_output = gr.Model3D(label="Extracted GLB", height=724, show_label=True, display_mode="solid", clear_color=(0.25, 0.25, 0.25, 1.0))
download_btn = gr.DownloadButton(label="Download GLB")
with gr.Column(scale=1, min_width=172):
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=18,
)
output_buf = gr.State()
# Handlers
demo.load(start_session)
demo.unload(end_session)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
lambda: gr.Walkthrough(selected=0), outputs=walkthrough
).then(
image_to_3d,
inputs=[
image_prompt, seed, resolution,
ss_guidance_strength, ss_guidance_rescale, ss_sampling_steps, ss_rescale_t,
shape_slat_guidance_strength, shape_slat_guidance_rescale, shape_slat_sampling_steps, shape_slat_rescale_t,
tex_slat_guidance_strength, tex_slat_guidance_rescale, tex_slat_sampling_steps, tex_slat_rescale_t,
],
outputs=[output_buf, preview_output],
)
extract_btn.click(
lambda: gr.Walkthrough(selected=1), outputs=walkthrough
).then(
extract_glb,
inputs=[output_buf, decimation_target, texture_size],
outputs=[glb_output, download_btn],
)
# Launch the Gradio app
if __name__ == "__main__":
os.makedirs(TMP_DIR, exist_ok=True)
# Construct ui components
btn_img_base64_strs = {}
for i in range(len(MODES)):
icon = Image.open(MODES[i]['icon'])
MODES[i]['icon_base64'] = image_to_base64(icon)
rmbg_client = Client("briaai/BRIA-RMBG-2.0")
pipeline = Trellis2ImageTo3DPipeline.from_pretrained('microsoft/TRELLIS.2-4B')
pipeline.rembg_model = None
pipeline.low_vram = False
pipeline.cuda()
envmap = {
'forest': EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
)),
'sunset': EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/sunset.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
)),
'courtyard': EnvMap(torch.tensor(
cv2.cvtColor(cv2.imread('assets/hdri/courtyard.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
dtype=torch.float32, device='cuda'
)),
}
demo.launch(css=css, head=head)