fix: progress updater
Browse files- .gitignore +2 -1
- app.py +24 -6
- utils.py +7 -0
.gitignore
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
.env
|
| 2 |
__pycache__/
|
| 3 |
*.mp4
|
| 4 |
-
*.jpg
|
|
|
|
|
|
| 1 |
.env
|
| 2 |
__pycache__/
|
| 3 |
*.mp4
|
| 4 |
+
*.jpg
|
| 5 |
+
test.py
|
app.py
CHANGED
|
@@ -4,13 +4,16 @@ import torchvision
|
|
| 4 |
from diffusers import I2VGenXLPipeline, DiffusionPipeline
|
| 5 |
from torchvision.transforms.functional import to_tensor
|
| 6 |
from PIL import Image
|
|
|
|
| 7 |
|
| 8 |
if gr.NO_RELOAD:
|
| 9 |
-
|
|
|
|
| 10 |
high_noise_frac = 0.8
|
| 11 |
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
|
| 12 |
generator = torch.manual_seed(8888)
|
| 13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 14 |
print("Device:", device)
|
| 15 |
|
| 16 |
base = DiffusionPipeline.from_pretrained(
|
|
@@ -41,17 +44,27 @@ def generate(prompt: str, progress=gr.Progress()):
|
|
| 41 |
progress((0, 100), desc="Starting..")
|
| 42 |
image = base(
|
| 43 |
prompt=prompt,
|
| 44 |
-
num_inference_steps=
|
| 45 |
denoising_end=high_noise_frac,
|
| 46 |
output_type="latent",
|
| 47 |
-
callback_on_step_end=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
).images[0]
|
| 49 |
image = refiner(
|
| 50 |
prompt=prompt,
|
| 51 |
-
num_inference_steps=
|
| 52 |
denoising_start=high_noise_frac,
|
| 53 |
image=image,
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
).images[0]
|
| 56 |
image = to_tensor(image)
|
| 57 |
frames: list[Image.Image] = pipeline(
|
|
@@ -62,7 +75,12 @@ def generate(prompt: str, progress=gr.Progress()):
|
|
| 62 |
guidance_scale=9.0,
|
| 63 |
generator=generator,
|
| 64 |
decode_chunk_size=10,
|
| 65 |
-
callback_on_step_end=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
).frames[0]
|
| 67 |
frames = [to_tensor(frame.convert("RGB")).mul(255).byte().permute(1, 2, 0) for frame in frames]
|
| 68 |
frames = torch.stack(frames)
|
|
|
|
| 4 |
from diffusers import I2VGenXLPipeline, DiffusionPipeline
|
| 5 |
from torchvision.transforms.functional import to_tensor
|
| 6 |
from PIL import Image
|
| 7 |
+
from utils import create_progress_updater
|
| 8 |
|
| 9 |
if gr.NO_RELOAD:
|
| 10 |
+
n_sdxl_steps = 50
|
| 11 |
+
n_i2v_steps = 50
|
| 12 |
high_noise_frac = 0.8
|
| 13 |
negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
|
| 14 |
generator = torch.manual_seed(8888)
|
| 15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
total_steps = n_sdxl_steps + n_i2v_steps
|
| 17 |
print("Device:", device)
|
| 18 |
|
| 19 |
base = DiffusionPipeline.from_pretrained(
|
|
|
|
| 44 |
progress((0, 100), desc="Starting..")
|
| 45 |
image = base(
|
| 46 |
prompt=prompt,
|
| 47 |
+
num_inference_steps=n_sdxl_steps,
|
| 48 |
denoising_end=high_noise_frac,
|
| 49 |
output_type="latent",
|
| 50 |
+
callback_on_step_end=create_progress_updater(
|
| 51 |
+
start=0,
|
| 52 |
+
total=total_steps,
|
| 53 |
+
desc="Generating first frame...",
|
| 54 |
+
progress=progress,
|
| 55 |
+
),
|
| 56 |
).images[0]
|
| 57 |
image = refiner(
|
| 58 |
prompt=prompt,
|
| 59 |
+
num_inference_steps=n_sdxl_steps,
|
| 60 |
denoising_start=high_noise_frac,
|
| 61 |
image=image,
|
| 62 |
+
callback_on_step_end=create_progress_updater(
|
| 63 |
+
start=n_sdxl_steps * high_noise_frac,
|
| 64 |
+
total=total_steps,
|
| 65 |
+
desc="Refining first frame...",
|
| 66 |
+
progress=progress,
|
| 67 |
+
),
|
| 68 |
).images[0]
|
| 69 |
image = to_tensor(image)
|
| 70 |
frames: list[Image.Image] = pipeline(
|
|
|
|
| 75 |
guidance_scale=9.0,
|
| 76 |
generator=generator,
|
| 77 |
decode_chunk_size=10,
|
| 78 |
+
callback_on_step_end=create_progress_updater(
|
| 79 |
+
start=n_sdxl_steps,
|
| 80 |
+
total=total_steps,
|
| 81 |
+
desc="Generating video...",
|
| 82 |
+
progress=progress,
|
| 83 |
+
),
|
| 84 |
).frames[0]
|
| 85 |
frames = [to_tensor(frame.convert("RGB")).mul(255).byte().permute(1, 2, 0) for frame in frames]
|
| 86 |
frames = torch.stack(frames)
|
utils.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gradio import Progress
|
| 2 |
+
|
| 3 |
+
def create_progress_updater(start: int, total: int, desc: str, progress: Progress):
|
| 4 |
+
def updater(pipe, step, timestep, callback_kwargs):
|
| 5 |
+
progress((step + start, total), desc=desc)
|
| 6 |
+
return callback_kwargs
|
| 7 |
+
return updater
|