Spaces:
Build error
Build error
File size: 13,422 Bytes
9b4ef96 c696f9e 9b4ef96 c696f9e 9b4ef96 c696f9e 9b4ef96 c696f9e 9b4ef96 c696f9e 9b4ef96 c696f9e 9b4ef96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
#!/usr/bin/env python3
"""
Novita AI RAG Chat Application - Uses your dataset as context
No fine-tuning required!
"""
import os
import json
import requests
import time
from pathlib import Path
from difflib import SequenceMatcher
def load_system_prompt(default_text):
"""Load system prompt from configs/system_prompt.md if available.
Extracts text between triple quotes ("")"), otherwise falls back to default_text.
"""
try:
base_dir = os.path.dirname(__file__)
md_path = os.path.join(base_dir, 'configs', 'system_prompt.md')
if not os.path.exists(md_path):
return default_text
with open(md_path, 'r', encoding='utf-8') as f:
content = f.read()
start = content.find('"""')
end = content.rfind('"""')
if start != -1 and end != -1 and end > start:
return content[start+3:end].strip()
# Fallback: strip markdown headers
lines = []
for line in content.splitlines():
if line.strip().startswith('#'):
continue
lines.append(line)
cleaned = '\n'.join(lines).strip()
return cleaned or default_text
except Exception:
return default_text
class NovitaAIRAGChat:
def __init__(self, api_key, dataset_path="data/textilindo_training_data.jsonl"):
self.api_key = api_key
self.base_url = "https://api.novita.ai/openai"
self.headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# System prompt / persona
self.system_prompt = os.getenv(
'SYSTEM_PROMPT',
load_system_prompt("You are Textilindo AI Assistant. Be concise, helpful, and use Indonesian.")
)
self.conversation_history = [
{"role": "system", "content": self.system_prompt}
]
self.current_model = "qwen/qwen3-235b-a22b-instruct-2507" # High-quality model
self.dataset = self.load_dataset(dataset_path)
self.context_window = 5 # Number of most relevant examples to include
def load_dataset(self, dataset_path):
"""Load the training dataset"""
print(f"π Loading dataset from {dataset_path}...")
dataset = []
if not os.path.exists(dataset_path):
print(f"β οΈ Dataset not found: {dataset_path}")
return dataset
try:
with open(dataset_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
data = json.loads(line)
dataset.append(data)
print(f"β
Loaded {len(dataset)} examples from dataset")
except Exception as e:
print(f"β Error loading dataset: {e}")
return dataset
def find_relevant_context(self, user_query, top_k=5):
"""Find most relevant examples from dataset"""
if not self.dataset:
return []
# Simple similarity scoring
scores = []
for i, example in enumerate(self.dataset):
instruction = example.get('instruction', '').lower()
output = example.get('output', '').lower()
query = user_query.lower()
# Calculate similarity scores
instruction_score = SequenceMatcher(None, query, instruction).ratio()
output_score = SequenceMatcher(None, query, output).ratio()
# Combined score (weight instruction more heavily)
combined_score = (instruction_score * 0.7) + (output_score * 0.3)
scores.append((combined_score, i))
# Sort by score and get top_k
scores.sort(reverse=True)
relevant_examples = []
for score, idx in scores[:top_k]:
if score > 0.1: # Only include if similarity > 10%
relevant_examples.append(self.dataset[idx])
return relevant_examples
def create_context_prompt(self, user_query, relevant_examples):
"""Create a prompt with relevant context"""
if not relevant_examples:
return user_query
context_parts = []
context_parts.append("Berikut adalah beberapa contoh pertanyaan dan jawaban tentang Textilindo:")
context_parts.append("")
for i, example in enumerate(relevant_examples, 1):
instruction = example.get('instruction', '')
output = example.get('output', '')
context_parts.append(f"Contoh {i}:")
context_parts.append(f"Pertanyaan: {instruction}")
context_parts.append(f"Jawaban: {output}")
context_parts.append("")
context_parts.append("Berdasarkan contoh di atas, jawab pertanyaan berikut:")
context_parts.append(f"Pertanyaan: {user_query}")
context_parts.append("Jawaban:")
return "\n".join(context_parts)
def chat_completion(self, message, model=None):
"""Send message to Novita AI with RAG context"""
if model is None:
model = self.current_model
# Find relevant context
relevant_examples = self.find_relevant_context(message, self.context_window)
# Create context-aware prompt
if relevant_examples:
enhanced_prompt = self.create_context_prompt(message, relevant_examples)
print(f"π Found {len(relevant_examples)} relevant examples from dataset")
else:
enhanced_prompt = message
print("π No relevant examples found, using direct query")
# Ensure system prompt is first
if not self.conversation_history or self.conversation_history[0].get("role") != "system":
self.conversation_history.insert(0, {"role": "system", "content": self.system_prompt})
# Add to conversation history
self.conversation_history.append({"role": "user", "content": enhanced_prompt})
# Prepare payload
payload = {
"model": model,
"messages": self.conversation_history,
"max_tokens": 500,
"temperature": 0.7,
"top_p": 0.9
}
try:
print("π€ Thinking...", end="", flush=True)
response = requests.post(
f"{self.base_url}/chat/completions",
headers=self.headers,
json=payload,
timeout=60
)
if response.status_code == 200:
result = response.json()
assistant_message = result.get('choices', [{}])[0].get('message', {}).get('content', '')
# Add assistant response to history
self.conversation_history.append({"role": "assistant", "content": assistant_message})
print("\r" + " " * 20 + "\r", end="") # Clear "Thinking..." message
return assistant_message
else:
print(f"\rβ Error: {response.status_code} - {response.text}")
return None
except Exception as e:
print(f"\rβ Error: {e}")
return None
def change_model(self, model_id):
"""Change the current model"""
self.current_model = model_id
print(f"β
Model changed to: {model_id}")
def clear_history(self):
"""Clear conversation history"""
self.conversation_history = [
{"role": "system", "content": self.system_prompt}
]
print("β
Conversation history cleared")
def set_system_prompt(self, prompt_text):
"""Update system prompt/persona and reset conversation history"""
prompt_text = (prompt_text or '').strip()
if not prompt_text:
print("β System prompt cannot be empty")
return
self.system_prompt = prompt_text
self.clear_history()
print("β
System prompt updated")
def show_models(self):
"""Show available models"""
try:
response = requests.get(f"{self.base_url}/models", headers=self.headers, timeout=10)
if response.status_code == 200:
models = response.json().get('data', [])
print("\nπ Available Models:")
print("-" * 50)
for i, model in enumerate(models[:20], 1): # Show first 20 models
model_id = model.get('id', 'Unknown')
print(f"{i:2d}. {model_id}")
print("-" * 50)
print(f"Current model: {self.current_model}")
else:
print("β Could not fetch models")
except Exception as e:
print(f"β Error: {e}")
def show_dataset_stats(self):
"""Show dataset statistics"""
if not self.dataset:
print("β No dataset loaded")
return
print(f"\nπ Dataset Statistics:")
print(f"Total examples: {len(self.dataset)}")
# Count by topic
topics = {}
for example in self.dataset:
metadata = example.get('metadata', {})
topic = metadata.get('topic', 'unknown')
topics[topic] = topics.get(topic, 0) + 1
print(f"Topics: {dict(topics)}")
# Show sample questions
print(f"\nπ Sample questions:")
for i, example in enumerate(self.dataset[:5], 1):
instruction = example.get('instruction', '')
print(f"{i}. {instruction}")
def main():
print("π Novita AI RAG Chat - Textilindo AI")
print("=" * 60)
print("This application uses your dataset as context with Novita AI models")
print("No fine-tuning required - RAG approach!")
print("=" * 60)
# Check API key
api_key = os.getenv('NOVITA_API_KEY')
if not api_key:
print("β NOVITA_API_KEY not found")
api_key = input("Enter your Novita AI API key: ").strip()
if not api_key:
print("β API key required")
return
os.environ['NOVITA_API_KEY'] = api_key
# Initialize RAG chat
chat = NovitaAIRAGChat(api_key)
# Test connection
print("π Testing connection...")
try:
response = requests.get(f"{chat.base_url}/models", headers=chat.headers, timeout=10)
if response.status_code != 200:
print("β Could not connect to Novita AI")
return
except Exception as e:
print(f"β Connection error: {e}")
return
print("β
Connected to Novita AI!")
# Show dataset stats
chat.show_dataset_stats()
# Show current model
print(f"\nπ€ Current model: {chat.current_model}")
# Main chat loop
print("\n㪠Start chatting! Type 'help' for commands, 'quit' to exit")
print("-" * 60)
while True:
try:
user_input = input("\nπ€ You: ").strip()
if not user_input:
continue
# Handle commands
if user_input.lower() in ['quit', 'exit', 'q']:
print("π Goodbye!")
break
elif user_input.lower() == 'help':
print("\nπ Available Commands:")
print(" help - Show this help")
print(" models - Show available models")
print(" change <id> - Change model (e.g., change 5)")
print(" clear - Clear conversation history")
print(" stats - Show dataset statistics")
print(" quit/exit/q - Exit the application")
print(" <any text> - Send message to AI (with RAG context)")
continue
elif user_input.lower() == 'models':
chat.show_models()
continue
elif user_input.lower() == 'clear':
chat.clear_history()
continue
elif user_input.lower() == 'stats':
chat.show_dataset_stats()
continue
elif user_input.lower().startswith('system '):
# Update system prompt/persona
new_prompt = user_input[len('system '):].strip()
chat.set_system_prompt(new_prompt)
continue
elif user_input.lower().startswith('change '):
try:
model_num = int(user_input.split()[1])
# This would need to be implemented to get model list
print("β οΈ Model changing not implemented yet")
except (ValueError, IndexError):
print("β Usage: change <number>")
continue
# Send message to AI with RAG context
response = chat.chat_completion(user_input)
if response:
print(f"\nπ€ Assistant: {response}")
except KeyboardInterrupt:
print("\nπ Goodbye!")
break
except Exception as e:
print(f"β Error: {e}")
if __name__ == "__main__":
main()
|