ford442's picture
Update app.py
a70e549 verified
raw
history blame
29.3 kB
import spaces
import os
import sys
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import torch
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.set_float32_matmul_precision("highest")
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
import cv2
import gc
import subprocess
import paramiko
from image_gen_aux import UpscaleWithModel
import numpy as np
import gradio as gr
import random
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
from diffusers import StableDiffusionXLImg2ImgPipeline, AutoencoderKL
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from moviepy.editor import VideoFileClip, concatenate_videoclips
from typing import Any, Dict, Optional, Tuple
# Imports for TeaCache
from ltx_video.models.transformers.transformer3d import Transformer3DModel, Transformer3DModelOutput
from diffusers.utils import logging
import re
logger = logging.get_logger(__name__)
# --- Start TeaCache Integration ---
# 1. Store the original, unbound forward method from the class definition
original_transformer_forward = Transformer3DModel.forward
# 2. Define our new, robust wrapper function
def teacache_wrapper_forward(self, hidden_states: torch.Tensor, **kwargs):
if not hasattr(self, "enable_teacache") or not self.enable_teacache:
# Call the original method if TeaCache is disabled
return original_transformer_forward(self, hidden_states=hidden_states, **kwargs)
# Determine if we should calculate or skip
should_calc = True
if self.cnt > 0 and self.cnt < self.num_steps - 1:
if (hasattr(self, "previous_hidden_states") and
self.previous_hidden_states is not None and
self.previous_hidden_states.shape == hidden_states.shape):
rel_l1_dist = ((hidden_states - self.previous_hidden_states).abs().mean() / self.previous_hidden_states.abs().mean()).cpu().item()
self.accumulated_rel_l1_distance += rel_l1_dist
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
self.accumulated_rel_l1_distance = 0
else:
# Force calculation if shapes mismatch or it's the first time in a new pass
self.accumulated_rel_l1_distance = 0
self.cnt += 1
if not should_calc and hasattr(self, "previous_residual") and self.previous_residual is not None and self.previous_residual.shape == hidden_states.shape:
# SKIP: Use the cached result
# The pipeline expects a Transformer3DModelOutput object.
return Transformer3DModelOutput(sample=self.previous_residual + hidden_states)
else:
# COMPUTE: Call the original, stored method, passing 'self' explicitly
self.previous_hidden_states = hidden_states.clone()
output = original_transformer_forward(self, hidden_states=hidden_states, **kwargs)
# Handle both tuple and object return types from the original function
if isinstance(output, tuple):
output_tensor = output[0]
else:
output_tensor = output.sample
self.previous_residual = output_tensor - hidden_states
return output
Transformer3DModel.forward = teacache_wrapper_forward
print("✅ Transformer3DModel patched with robust TeaCache Wrapper.")
MAX_SEED = np.iinfo(np.int32).max
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
print("Loading SDXL Image-to-Image pipeline...")
enhancer_pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"ford442/stable-diffusion-xl-refiner-1.0-bf16",
use_safetensors=True,
requires_aesthetics_score=True,
)
enhancer_pipeline.vae.set_default_attn_processor()
enhancer_pipeline.to("cpu")
print("SDXL Image-to-Image pipeline loaded successfully.")
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 900
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(repo_id=LTX_REPO, filename=SPATIAL_UPSCALER_FILENAME, local_dir=models_dir, local_dir_use_symlinks=False)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"], precision=PIPELINE_CONFIG_YAML["precision"], text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], sampler=PIPELINE_CONFIG_YAML["sampler"], device="cpu", enhance_prompt=False, prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"], prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"])
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"], device="cpu")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance: latent_upsampler_instance.to(target_inference_device)
from diffusers.models.attention_processor import AttnProcessor2_0
from kernels import get_kernel
fa3_kernel = get_kernel("kernels-community/flash-attn3")
class FlashAttentionProcessor(AttnProcessor2_0):
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
**kwargs,
):
query = attn.to_q(hidden_states)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
scale = attn.scale
query = query * scale
b, t, c = query.shape
h = attn.heads
d = c // h
q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3)
k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3)
v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3)
out_reshaped = torch.empty_like(q_reshaped)
fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c)
out = attn.to_out(out)
return out
fa_processor = FlashAttentionProcessor()
# Iterate through the pipeline's UNet and apply the custom processor
for name, module in pipeline_instance.transformer.named_modules():
if isinstance(module, AttnProcessor2_0):
module.processor = fa_processor
def upload_to_sftp(local_filepath):
if not all([FTP_HOST, FTP_USER, FTP_PASS, FTP_DIR]):
print("SFTP credentials not set. Skipping upload.")
return
try:
transport = paramiko.Transport((FTP_HOST, 22))
transport.connect(username=FTP_USER, password=FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
remote_filename = os.path.basename(local_filepath)
remote_filepath = os.path.join(FTP_DIR, remote_filename)
print(f"Uploading {local_filepath} to {remote_filepath}...")
sftp.put(local_filepath, remote_filepath)
print("Upload successful.")
sftp.close()
transport.close()
except Exception as e:
print(f"SFTP upload failed: {e}")
gr.Warning(f"SFTP upload failed: {e}")
def calculate_new_dimensions(orig_w, orig_h):
if orig_w == 0 or orig_h == 0: return int(1024), int(1024)
if orig_w >= orig_h:
new_h, new_w = 1024, round((1024 * (orig_w / orig_h)) / 32) * 32
else:
new_w, new_h = 1024, round((1024 * (orig_h / orig_w)) / 32) * 32
return int(max(256, min(new_h, MAX_IMAGE_SIZE))), int(max(256, min(new_w, MAX_IMAGE_SIZE)))
def get_duration(*args, **kwargs):
duration_ui = kwargs.get('duration_ui', 5.0)
if duration_ui > 7.0: return 110
if duration_ui > 5.0: return 100
if duration_ui > 4.0: return 90
if duration_ui > 3.0: return 70
if duration_ui > 2.0: return 60
if duration_ui > 1.5: return 50
if duration_ui > 1.0: return 45
if duration_ui > 0.5: return 30
return 90
@spaces.GPU(duration=20)
def superres_image(image_to_enhance: Image.Image):
print("Doing super-resolution.")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.set_float32_matmul_precision("medium")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale_a = upscaler(image_to_enhance, tiling=True, tile_width=256, tile_height=256)
upscale = upscaler(upscale_a, tiling=True, tile_width=256, tile_height=256)
enhanced_image_a = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
enhanced_image = enhanced_image_a.resize((enhanced_image_a.width // 4, enhanced_image_a.height // 4), Image.LANCZOS)
return enhanced_image
@spaces.GPU(duration=30)
def enhance_frame(prompt, image_to_enhance: Image.Image):
try:
print("Moving enhancer pipeline to GPU...")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
enhancer_pipeline.to("cuda",torch.bfloat16)
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
refine_prompt = prompt +" high detail, sharp focus, 1024x1024, professional"
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.set_float32_matmul_precision("high")
enhanced_image = enhancer_pipeline(prompt=refine_prompt, image=image_to_enhance, strength=0.07, generator=generator, num_inference_steps=180).images[0]
print("Frame enhancement successful.")
except Exception as e:
print(f"Error during frame enhancement: {e}")
gr.Warning("Frame enhancement failed. Using original frame.")
return image_to_enhance
finally:
print("Moving enhancer pipeline to CPU...")
enhancer_pipeline.to("cpu")
gc.collect()
torch.cuda.empty_cache()
return enhanced_image
def use_last_frame_as_input(prompt, video_filepath, do_enhance, do_superres):
if not video_filepath or not os.path.exists(video_filepath):
gr.Warning("No video clip available.")
return None, gr.update()
cap = None
try:
cap = cv2.VideoCapture(video_filepath)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count - 1)
ret, frame = cap.read()
if not ret: raise ValueError("Failed to read frame.")
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
print("Displaying original last frame...")
yield pil_image, gr.update()
if do_superres:
pil_image = superres_image(pil_image)
if do_enhance:
enhanced_image = enhance_frame(prompt, pil_image)
if do_superres:
enhanced_image = superres_image(enhanced_image)
print("Displaying enhanced frame and switching tab...")
yield enhanced_image, gr.update(selected="i2v_tab")
else:
if do_superres:
pil_image = superres_image(pil_image)
yield pil_image, gr.update(selected="i2v_tab")
except Exception as e:
gr.Error(f"Failed to extract frame: {e}")
return None, gr.update()
finally:
if cap: cap.release()
def stitch_videos(clips_list):
if not clips_list or len(clips_list) < 2:
raise gr.Error("You need at least two clips to stitch them together!")
print(f"Stitching {len(clips_list)} clips...")
try:
video_clips = [VideoFileClip(clip_path) for clip_path in clips_list]
final_clip = concatenate_videoclips(video_clips, method="compose")
final_output_path = os.path.join(tempfile.mkdtemp(), f"stitched_video_{random.randint(10000,99999)}.mp4")
final_clip.write_videofile(final_output_path, codec="libx264", audio=False, threads=4, preset='ultrafast')
for clip in video_clips:
clip.close()
return final_output_path
except Exception as e:
raise gr.Error(f"Failed to stitch videos: {e}")
def clear_clips():
return [], "Clips created: 0", None, None
@spaces.GPU(duration=get_duration)
def generate(prompt, negative_prompt, clips_list, input_image_filepath, input_video_filepath,
height_ui, width_ui, mode, duration_ui, ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag, num_steps, fps,
enable_teacache, teacache_threshold,
progress=gr.Progress(track_tqdm=True)):
# Configure TeaCache state on the transformer instance for each run
try:
pipeline_instance.transformer.enable_teacache = enable_teacache
if enable_teacache:
print(f"✅ TeaCache is ENABLED with threshold: {teacache_threshold}")
pipeline_instance.transformer.rel_l1_thresh = teacache_threshold
except AttributeError:
print("⚠️ Could not configure TeaCache on transformer.")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.set_float32_matmul_precision("highest")
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
if mode not in ["text-to-video", "image-to-video", "video-to-video"]:
raise gr.Error(f"Invalid mode: {mode}.")
if mode == "image-to-video" and not input_image_filepath:
raise gr.Error("input_image_filepath is required for image-to-video mode")
elif mode == "video-to-video" and not input_video_filepath:
raise gr.Error("input_video_filepath is required for video-to-video mode")
if randomize_seed: seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(round((max(1, round(duration_ui * fps)) - 1.0) / 8.0) * 8 + 1)))
actual_height, actual_width = int(height_ui), int(width_ui)
height_padded, width_padded = ((actual_height - 1) // 32 + 1) * 32, ((actual_width - 1) // 32 + 1) * 32
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
num_frames_padded = max(9, ((actual_num_frames - 2) // 8 + 1) * 8 + 1)
call_kwargs = {
"prompt": prompt, "negative_prompt": negative_prompt, "height": height_padded, "width": width_padded,
"num_frames": num_frames_padded, "num_inference_steps": num_steps, "frame_rate": int(fps),
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt", "conditioning_items": None, "media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False, "enhance_prompt": False
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values").lower()
stg_map = {
"stg_av": SkipLayerStrategy.AttentionValues, "attention_values": SkipLayerStrategy.AttentionValues,
"stg_as": SkipLayerStrategy.AttentionSkip, "attention_skip": SkipLayerStrategy.AttentionSkip,
"stg_r": SkipLayerStrategy.Residual, "residual": SkipLayerStrategy.Residual,
"stg_t": SkipLayerStrategy.TransformerBlock, "transformer_block": SkipLayerStrategy.TransformerBlock
}
call_kwargs["skip_layer_strategy"] = stg_map.get(stg_mode_str, SkipLayerStrategy.AttentionValues)
if mode == "image-to-video":
media_tensor = load_image_to_tensor_with_resize_and_crop(input_image_filepath, actual_height, actual_width)
call_kwargs["conditioning_items"] = [ConditioningItem(torch.nn.functional.pad(media_tensor, padding_values).to(target_inference_device), 0, 1.0)]
elif mode == "video-to-video":
call_kwargs["media_items"] = load_media_file(media_path=input_video_filepath, height=actual_height, width=actual_width, max_frames=int(ui_frames_to_use), padding=padding_values).to(target_inference_device)
if improve_texture_flag and latent_upsampler_instance:
multi_scale_pipeline = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
pass_args = {"guidance_scale": float(ui_guidance_scale)}
multi_scale_kwargs = {
**call_kwargs,
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": {**PIPELINE_CONFIG_YAML.get("first_pass", {}), **pass_args},
"second_pass": {**PIPELINE_CONFIG_YAML.get("second_pass", {}), **pass_args}
}
# Configure for first pass
first_pass_steps = multi_scale_kwargs.get("first_pass", {}).get("num_inference_steps", num_steps)
pipeline_instance.transformer.num_steps = first_pass_steps
pipeline_instance.transformer.cnt = 0
pipeline_instance.transformer.previous_hidden_states = None
pipeline_instance.transformer.previous_residual = None
pipeline_instance.transformer.accumulated_rel_l1_distance = 0
# The multi_scale_pipeline internally calls the base pipeline, which will use the patched forward method
# We need to reset the state before the second pass, which happens inside the __call__ of LTXMultiScalePipeline
# This requires modifying the library, so for now, we reset here and hope for the best.
result_images_tensor = multi_scale_pipeline(**multi_scale_kwargs).images
else:
pipeline_instance.transformer.num_steps = num_steps
pipeline_instance.transformer.cnt = 0
pipeline_instance.transformer.previous_hidden_states = None
pipeline_instance.transformer.previous_residual = None
pipeline_instance.transformer.accumulated_rel_l1_distance = 0
single_pass_kwargs = {**call_kwargs, "guidance_scale": float(ui_guidance_scale), **PIPELINE_CONFIG_YAML.get("first_pass", {})}
result_images_tensor = pipeline_instance(**single_pass_kwargs).images
if result_images_tensor is None: raise gr.Error("Generation failed.")
pad_l, pad_r, pad_t, pad_b = padding_values
result_images_tensor = result_images_tensor[:, :, :actual_num_frames, pad_t:(-pad_b or None), pad_l:(-pad_r or None)]
video_np = (np.clip(result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy(), 0, 1) * 255).astype(np.uint8)
output_video_path = os.path.join(tempfile.mkdtemp(), f"output_{random.randint(10000,99999)}.mp4")
with imageio.get_writer(output_video_path, format='FFMPEG', fps=call_kwargs["frame_rate"], codec='libx264', quality=10, pixelformat='yuv420p') as video_writer:
for idx, frame in enumerate(video_np):
progress(idx / len(video_np), desc="Saving video clip...")
video_writer.append_data(frame)
#upload_to_sftp(output_video_path)
updated_clips_list = clips_list + [output_video_path]
counter_text = f"Clips created: {len(updated_clips_list)}"
return output_video_path, seed_ui, gr.update(visible=True), updated_clips_list, counter_text
# ... The rest of the script is unchanged ...
# ... (UI and event handlers are the same) ...
def update_task_image():
return "image-to-video"
def update_task_text():
return "text-to-video"
def update_task_video():
return "video-to-video"
css="""#col-container{margin:0 auto;max-width:900px;}"""
with gr.Blocks(css=css) as demo:
clips_state = gr.State([])
gr.Markdown("# LTX Video Clip Stitcher")
gr.Markdown("Generate short video clips and stitch them together to create a longer animation.")
with gr.Row():
with gr.Column():
with gr.Tabs() as tabs:
with gr.Tab("image-to-video", id="i2v_tab") as image_tab:
video_i_hidden = gr.Textbox(visible=False);
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"]);
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3);
i2v_button = gr.Button("Generate Image-to-Video Clip", variant="primary")
with gr.Tab("text-to-video", id="t2v_tab") as text_tab:
image_n_hidden = gr.Textbox(visible=False);
video_n_hidden = gr.Textbox(visible=False); t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3);
t2v_button = gr.Button("Generate Text-to-Video Clip", variant="primary")
with gr.Tab("video-to-video", id="v2v_tab") as video_tab:
image_v_hidden = gr.Textbox(visible=False);
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]);
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=120, value=9, step=8, info="Must be N*8+1.");
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3);
v2v_button = gr.Button("Generate Video-to-Video Clip", variant="primary")
duration_input = gr.Slider(label="Clip Duration (seconds)", minimum=1.0, maximum=10.0, value=2.0, step=0.1)
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True)
enhance_checkbox = gr.Checkbox(label="Improve Frame (SDXL Refiner)", value=True)
superres_checkbox = gr.Checkbox(label="Upscale Frame (ClearRealityV1)", value=True)
with gr.Column():
output_video = gr.Video(label="Last Generated Clip", interactive=False)
use_last_frame_button = gr.Button("Use Last Frame as Input Image", visible=False)
with gr.Accordion("Stitching Controls", open=True):
clip_counter_display = gr.Markdown("Clips created: 0")
with gr.Row(): stitch_button = gr.Button("🎬 Stitch All Clips"); clear_button = gr.Button("🗑️ Clear All Clips")
final_video_output = gr.Video(label="Final Stitched Video", interactive=False)
with gr.Accordion("Advanced settings", open=False):
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False);
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
with gr.Row():
teacache_checkbox = gr.Checkbox(label="Enable TeaCache Acceleration", value=True)
teacache_slider = gr.Slider(
minimum=0.01,
maximum=0.1,
step=0.01,
value=0.05,
label="TeaCache Threshold (Higher = Faster)"
)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0);
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row(visible=False):
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1)
with gr.Row():
height_input = gr.Slider(label="Height", value=1024, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
width_input = gr.Slider(label="Width", value=1024, step=32, minimum=32, maximum=MAX_IMAGE_SIZE);
num_steps = gr.Slider(label="Steps", value=30, step=1, minimum=1, maximum=420);
fps = gr.Slider(label="FPS", value=30.0, step=1.0, minimum=4.0, maximum=60.0)
def handle_image_upload_for_dims(f, h, w):
if not f: return gr.update(value=h), gr.update(value=w)
img = Image.open(f); new_h, new_w = calculate_new_dimensions(img.width, img.height); return gr.update(value=new_h), gr.update(value=new_w)
def handle_video_upload_for_dims(f, h, w):
if not f or not os.path.exists(str(f)): return gr.update(value=h), gr.update(value=w)
with imageio.get_reader(str(f)) as reader:
meta = reader.get_meta_data(); orig_w, orig_h = meta.get('size', (reader.get_data(0).shape[1], reader.get_data(0).shape[0]));
new_h, new_w = calculate_new_dimensions(orig_w, orig_h); return gr.update(value=new_h), gr.update(value=new_w)
image_i2v.upload(handle_image_upload_for_dims, [image_i2v, height_input, width_input], [height_input, width_input]);
video_v2v.upload(handle_video_upload_for_dims, [video_v2v, height_input, width_input], [height_input, width_input]);
image_tab.select(update_task_image, outputs=[mode]); text_tab.select(update_task_text, outputs=[mode]);
video_tab.select(update_task_video, outputs=[mode])
common_params = [height_input, width_input, mode, duration_input, frames_to_use, seed_input, randomize_seed_input, guidance_scale_input, improve_texture, num_steps, fps, teacache_checkbox, teacache_slider]
t2v_inputs = [t2v_prompt, negative_prompt_input, clips_state, image_n_hidden, video_n_hidden] + common_params;
i2v_inputs = [i2v_prompt, negative_prompt_input, clips_state, image_i2v, video_i_hidden] + common_params;
v2v_inputs = [v2v_prompt, negative_prompt_input, clips_state, image_v_hidden, video_v2v] + common_params
gen_outputs = [output_video, seed_input, use_last_frame_button, clips_state, clip_counter_display]
hide_btn = lambda: gr.update(visible=False)
t2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=t2v_inputs, outputs=gen_outputs, api_name="text_to_video")
i2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=i2v_inputs, outputs=gen_outputs, api_name="image_to_video")
v2v_button.click(hide_btn, outputs=[use_last_frame_button], queue=False).then(fn=generate, inputs=v2v_inputs, outputs=gen_outputs, api_name="video_to_video")
use_last_frame_button.click(fn=use_last_frame_as_input, inputs=[i2v_prompt,output_video,enhance_checkbox, superres_checkbox], outputs=[image_i2v, tabs])
stitch_button.click(fn=stitch_videos, inputs=[clips_state], outputs=[final_video_output])
clear_button.click(fn=clear_clips, outputs=[clips_state, clip_counter_display, output_video, final_video_output])
if __name__ == "__main__":
if os.path.exists(models_dir): print(f"Model directory: {Path(models_dir).resolve()}")
demo.queue().launch(debug=True, share=True, mcp_server=True)